CS6120: Lecture 12 Web Search Machine Translation

Kenneth Church

https://kwchurch.github.io/

1

Your Projects

- Oral:
 - 20-40 minutes
- Written
 - 5-20 pages
 - lots of references
- Say everything three times
 - Winston: How to Speak
 - https://www.youtube.com/watch?v=Unzc731iCUY
- Examples:
 - https://aclanthology.org/2022.acl-long.60
 - <u>http://34.204.188.58/cgi-bin/similar?embedding=s2_recommendations&limit=20&search=An+Information-theoretic+Approach+to+Prompt+Engineering+Without+Ground+Truth+Labels</u>
 - <u>https://aclanthology.org/events/acl-2022/</u>

Web Search & Information Retrieval

Information Retrieval

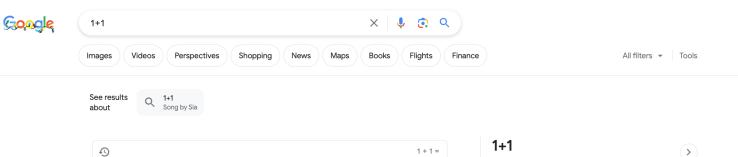
- Textbook
 - <u>https://www-nlp.stanford.edu/IR-book/</u>
- Term-by-doc matrix: *M*
 - Similarity of terms: $M M^T$
 - Similarity of doc: $M^T M$
- Index: Inverted file (postings)
 - Rows of M
- Solitaire \rightarrow Multiplayer Game
 - Solitaire: users lose to library (casino)
 - Multiplayer Game: Ecosytems
 - Readers, writers, advertizers, market makers

Web Search

- Left rail (algo) vs. right rail (ads)
 - Instant Answers
- Crawl: wget
 - Seed URLs \rightarrow sample of ``everything''
 - Deep web
 - WayBack Machine
 - <u>https://web.archive.org/</u>
- User logs: queries, clicks
 - Larger than crawls
 - Healthy ecosystem → more readers than writers
 - Behavioral signals
 - (super-important feedback)

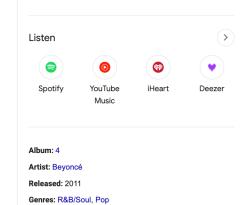
Web Crawling

https://nlp.stanford.edu/IR-book/pdf/20crawl.pdf


- Expensive: Limited to a few large companies
- Prioritize URLs by coverage of
 - Popular pages (estimates of demand)
 - Freshness (estimates of when the content is likely to differ from what is in cache)
- How large is the web? <u>Spider traps</u>!
 - (Near duplicate pages & Approximate nearest neighbors)
 - Calendar pages are not spider traps, but...
 - Ads, view counters
 - <u>https://www.wysiwygwebbuilder.com/phpcounter.html</u>
 - <u>https://www.geeksforgeeks.org/comparator-function-of-qsort-in-c/</u>
- Politeness (robots.txt): denial of service attacks
- Bragging Rights
 - Our Index is bigger than yours \rightarrow Race Conditions
- How do you get seeds?
 - Toolbar, Gmail, Chrome, phones, Social Media, DNS (Domain Name System)
 - Security/privacy holes & DNS

Types of Answers

- Left Rail: 10 blue links
 - algo search
 - learning to rank: <u>https://en.wikipedia.org/wiki/Learning_to_rank</u>
- Right Rail: ads
 - auction: https://en.wikipedia.org/wiki/Sponsored_search_auction
- Instant Answers
 - Internal groups compete for types of queries


Instant Answers

Ð						1+1= 2
Rad	Deg	x!	()	%	AC
Inv	sin	In	7	8	9	÷
π	cos	log	4	5	6	×
е	tan	\checkmark	1	2	3	-
Ans	EXP	Xy	0		=	+
						Feedback

Beyoncé - 1+1 (Video) - YouTube https://www.youtube.com > watch

People also search for

YouTube · BeyoncéVEVO ٠ 8.6M+ views · 12 years ago Beyoncé - 1+1 (Audio) - YouTube

Music video by Beyoncé performing 1+1. (C) 2011 Sony Music Entertainment.

Wikipedia w https://en.wikipedia.org > wiki > 1+1_(song)

1+1 (song)

"1+1" is a song recorded by American recording artist Beyoncé for her fourth studio album, 4 (2011). It was released by Columbia Records in the United .

Genius <mark>с</mark> https://genius.com > Beyonce-1-1-lyrics

Beyoncé – 1+1 Lyrics

Aug 8, 2022 - [Post-Chorus 1] When my days look low. Pull me in close and don't let me go, make love to me. So when the world's at war, let our love heal ...

Instant Answers 10 Blue Links

Opium \	vvai					×	Ŷ		~
mages	Videos	News	Shopping	Maps	Books	Flights	Financ	e	

All filters 👻 Tools

Google

w Outcome Purpose

The first Opium War (1839–42) was fought between China and Great Britain, and the second Opium War (1856–60), also known as the Arrow War or the Anglo-French War in China, was fought by Great Britain and France against China. Qing dynasty. Read more about the Qing dynasty. Nov 6, 2023

Britannica
https://www.britannica.com > ... > International Relations

Opium Wars | Definition, Summary, Facts, & Causes - Britannica

About featured snippets •
Feedback

U.S. Department of State (.gov)
 https://history.state.gov > milestones > china-1

*

The Opening to China Part I: the First Opium War, ...

The **Opium War** and these treaties were emblematic of an era in which Western powers tried to gain unfettered access to Chinese products and markets for European ...

U.S. Department of State (.gov)
 https://history.state.gov > milestones > china-2

The Opening to China Part II: The Second Opium War, ...

Following the First **Opium War** in the 1840s, the Western powers concluded a series of treaties with China in an effort to open its lucrative markets to Western ...

Wikipedia https://en.wikipedia.org > wiki > First_Opium_War

First Opium War

The First **Opium War** also known as the Anglo-Chinese War, was a series of military engagements fought between the British Empire and the Qing dynasty of ...

 Result: British Victory: Treaty of Nanking; Esta...
 Location: China and South China Sea

 Date: 4 September 1839 – 29 August 1842; (2...
 Territorial changes: Hong Kong Island cede...

Opium \cdot The Opium War (film) \cdot Treaty of Nanking \cdot Nerbudda incident

About

The Opium Wars were two conflicts waged between China and Western powers during the mid-19th century. The First Opium War was fought from 1839 to 1842 between China and Britain. Wikipedia

Location: China, Guangzhou, Guangdong Province

Start date: 1839

End date: 1860

Feedback

Ads

Google		TV × 4 3 Q												
		Shopping Images Videos News Perspectives Maps Books Flights Finance All filters Tools												
Filter by		Smart TV Under 32 inches 32 - 43 inches 43 - 55 inches 55 - 75 inches Over 75 inches On sale 4K Roku Under \$350 LED												
On saleGet it fast		Sponsored :												
UsedSmall business		SALE		SALE	SALE			SALE						
Screen Size Under 32 inches 32 – 43 inches	^	LG OLED	SAMSUNG The Frame	DLED	SONY BRAVIA RT	LG OLED		LGUHD	A Sector					
 43 – 55 inches 55 – 75 inches Over 75 inches 		Pick up todayLG - 48" ClassA2 Series	Samsung 55" Class The	Samsung 65" Class OLED…	Pick up todaySony - 65"Class BRAVI	LG C3 Series 77-Inch Clas	Gold Series 32" (Vizio) / 1 Ye	LG 50" Class 4K UHD Sm	Samsung 55" >					
HDTV Format 4K 1080p 8K 720p	^	\$599.99 1,300 Best Buy ★★★★★ (7k+) Bluetooth, Wi-Fi, USB, HDMI,	\$1,499.99 Samsung ***** (9k+) Bluetooth, Wi-Fi, RF, USB, HDMI	\$1,599.99 2, Samsung ****(9k+) Bluetooth, Wi-Fi, USB, HDMI,	\$1,899.99 2, Best Buy ★★★★★ (2k+) Bluetooth, Wi-Fi, IrDA, RF, USB,	\$2,496.99 Amazon.com Free shipping Bluetooth, Wi-Fi, RF, USB, HDMI	\$899.00 MirageVision □ Free by 1 Wi-Fi · 4K · 3840 x 2160 · 32	\$299.99 \$ 350 Target ★★★★★ (9k+) Bluetooth, Wi-Fi, RF, USB, HDMI	\$1,699.99 Samsung ★★★★★ (20) Bluetooth, USB, HDMI · QLED ·					
Price	~	Walmart https://www.walm	art.com > tv-home-theater	÷										
Brand	~	TV & Video - W Shop TVs and Video			art TVs , big	COLED								
Features	Shop TVs and Video equipment at Walmart.com and browse Smart TVs , big screen TVs and streaming devices like Roku. Save money. Live better. 4.5 ★ seller rating (846) · \$9.95 same-day delivery over \$35 · Free 90-day													
Display Type	~	returns TV Mounts & Access	ories · TV Antennas, H	IDTV Antennas										
Supported Streaming Services	~	Best Buy https://www.bestt	ouy.com › TV & Home The	ater :		Martine C								
Screen Form	~	TVs: Television	ns & HDTVs e latest TVs, including	deals on LED_4K_OI	ED & curved									
Color	\sim	flat screen TVs from												
Stores	\sim	•	at-screen TV · Smart T											

Evaluation

- Extract sample of queries from query logs
- Scrape 10 blue links from release candidates
 - (and competition)
 - (over time)
- Send Queries and candidate URLs to human judges
 - score 1-5 (plus perhaps offensive)
 - perfect, excellent, good, fair, poor, offensive/illegal/irresponsible
- Score scrapes with NDCG

- Learning to Rank
- Track scores over time
 - and hopefully get better and better over time
- Issues
 - Judges prefer Google Brand
 - Even when the links are the same
 - Learning to rank \rightarrow Cheating
 - Watermarking
 - Now that Google is a monopoly
 - Little incentive to improve
 - Web search may be degrading
 - (creating opportunity for chat bots)
 - SEOs (Search Engine Optimization)

Ad Auction

https://moz.com/blog/understanding-google-ads-auction

- Bid
- Quality
 - Estimate of CTR (clicks)
- Market maker (Google)
 - Maximizing benefit to
 - Readers
 - Writers
 - Advertisers
- Economic Optimization
 - Different from learning to rank

	Max	x	Quality	=	Ad	Ad
	CPC Bid		Score		Rank	Position
Advertiser 1	\$3.00		8		24	1
Advertiser 2	\$4.00		5		20	2
Advertiser 3	\$6.00		2		12	3
Advertiser 4	\$8.00		1		8	4

Search

文A 14 languages ~

Read Edit View history Tools ~

Types All-pay (Chinese) · Amsterdam · Anglo-Dutch · Barter double · Best/not best · Brazilian · Calcutta · Candle · Click-box bidding · Combinatorial · Common value · Deferred-acceptance · Discriminatory price · Double · Dutch · English · Forward · French · Generalized first-price · Generalized second-price · Japanese · Knapsack · Multi-attribute · Multiunit ·

(Top)

Properties

Contents [hide]

Self-revelation and incentive compatibility

Ex-post efficiency

Weaknesses

Proof of dominance of truthful bidding

Revenue equivalence of the Vickrev auction and sealed first price auction

Use in network routing

Generalizations

See also

References

Notes

From Wikipedia, the free encyclopedia

Vickrey auction

Article Talk

A Vickrey auction or sealed-bid second-price auction (SBSPA) is a type of sealed-bid auction. Bidders submit written bids without knowing the bid of the other people in the auction. The highest bidder wins but the price paid is the second-highest bid. This type of auction is strategically similar to an English auction and gives bidders an incentive to bid their true value. The auction was first described academically by Columbia University professor William Vickrey in 1961^[1] though it had been used by stamp collectors since 1893.^[2] In 1797 Johann Wolfgang von Goethe sold a manuscript using a sealed-bid, second-price auction.^[3]

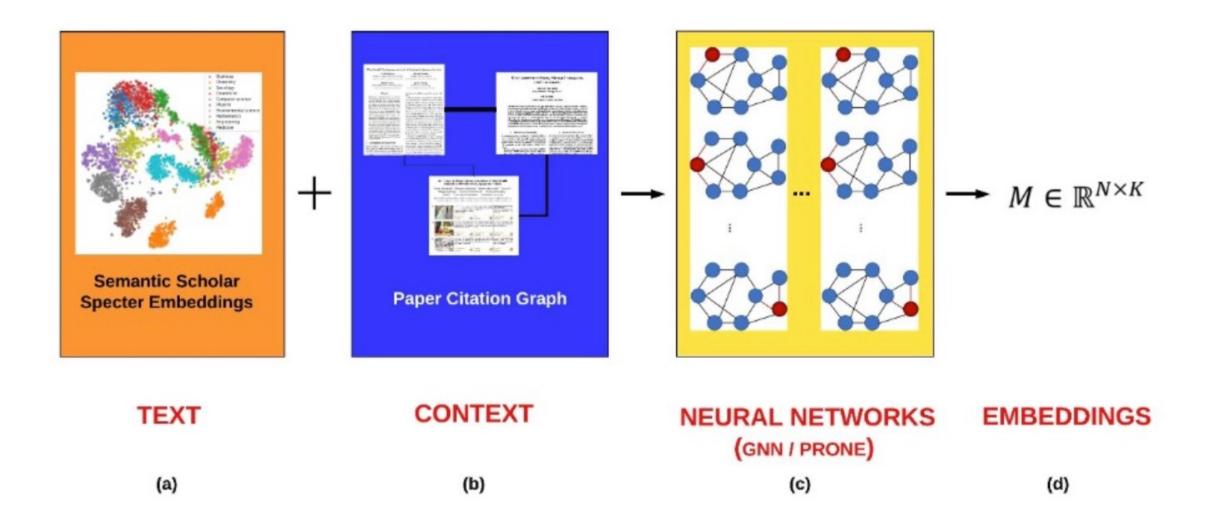
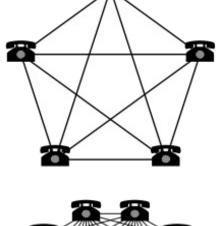
Vickrey's original paper mainly considered auctions where only a single, indivisible good is being sold. The terms Vickrey auction and second-price sealed-bid auction are, in this case only, equivalent and used interchangeably. In the case of multiple identical goods, the bidders submit inverse demand curves and pay the opportunity cost.^[4]

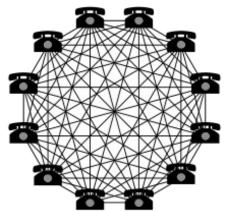
Vickrey auctions are much studied in economic literature but uncommon in practice. Generalized variants of the Vickrey auction for multiunit auctions exist, such as the generalized second-price auction used in Google's and Yahoo!'s online advertisement programmes^{[5][6]} (not incentive compatible) and the Vickrey-Clarke-Groves auction (incentive compatible).

Priors: Pr(URL) Query-independent

- Page Rank
 - Prior: Pr(ULR)
 - Eigenvalue
 - Random Surfer Model
 - https://en.wikipedia.org/wiki/PageRank
- ProNE: Fast and Scalable Network Representation Learning
- <u>https://en.wikipedia.org/wiki/Graph_neural_network</u>

- URL \rightarrow Noisy Channel \rightarrow Q
 - Pr(URL) = ARGMAX_U Pr(U) Pr(Q|U)
- Prior: Pr(URL)
- Channel: Pr(Q|URL)


Figure 1: Embeddings are typically based on text (titles and abstracts). We will create multiple embeddings based on combinations of text and context (citations).

Metcalfe's Law (Network Effects)

- History: 3Com was selling small networks
 - 3 = 1 printer + 2 computers
 - Metcalfe argued they should sell bigger networks
 - (and more 3Com products)
 - because of economies of scale
- Economy of Scale:
 - Benefits scale faster than costs
 - Benefits: $\sim n^2$
 - Costs: ~*n*
- Law has been good for AT&T, Google, Social Media
- Hypo: also good for Academic Search
 - Consequently, we should experiment with large graphs

Linear Algebra & Term-by-Document Matrices

- Singular Value Decomposition (SVD)
- Principal Component Analysis (PCA)
- Dimension Reduction
- Rotations
- Approximate Nearest Neighbors (ANN)

Nearly Everything To Vectors (Embeddings) (VectorDB)

- "Everything"
 - Words (Terms): word2vec
 - Documents (Text Strings):
 - doc2vec, BERT, Specter
 - Graphs (GNNs)
 - Example: citation graph
 - Semantics ("Meaning")
 - All the world's languages
 - Audio (Speech, Music)
 - Pictures and Videos

- Embeddings
 - Similarity \approx Cosine
 - Similar documents
 - Word Overlap
 - Nearby in citation graph
 - Similar topics, venues, authors
 - Latent (Hidden) Dimensions
- Computational Convenience
 - Dimension Reduction
 - Rotations
 - Approximate Nearest Neighbors

A vector space model for automatic indexing - ACM Digital Library dl.acm.org/citation.cfm?id=361220 -

by G Salton - 1975 - Cited by 7464 - Related articles

A vector space model for automatic indexing, Published by ACM Salton, G., and Yang, C.S. On the specification of term values in automatic indexing.

Abstract · Authors · References · Cited By

 α

H

Salton's Vector Space Model

Word2vec (Embeddings)

- $M \in \mathbb{R}^{V \times K}$ (tall-skinny matrix)
 - V: vocabulary size (≈ 500 k)
 - K: hidden dimensions (≈ 300)
- $MM^T = cos(w_i, w_i) \propto PMI(w_i, w_i)$
 - Similarity of all pairs of words in V
 - It might be infeasible to materialize MM^T
 - But there are approximations (ANNs)
 - that find many/most of the large values
- Better for capturing collocations
 - Collocations: w_i & w_i appear near one another (more than chance)
- Less appropriate for other notions of similarity
 - Both synonyms and antonyms appear near one another
 - (But they don't mean the same thing)

Slide from JM3

For plotting purposes,

- use dimension reduction
- to reduce K down to 2D

The Bag of Words Representation

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

Information Retrieval (IR) notation Term Weighting: tf * IDF

- t: term
- d: document
- D: # of documents in library
- Interpretation:
 - Entropy: $H = -\log(P)$
 - where $P = \Pr(t \in d)^{count(t,d)}$

- tf(t,d): term frequency
 - # of times that t appears in d
- df(t): document frequency
 - # of documents that contain t
 - (at least once)
- IDF(t): inverse doc frequency

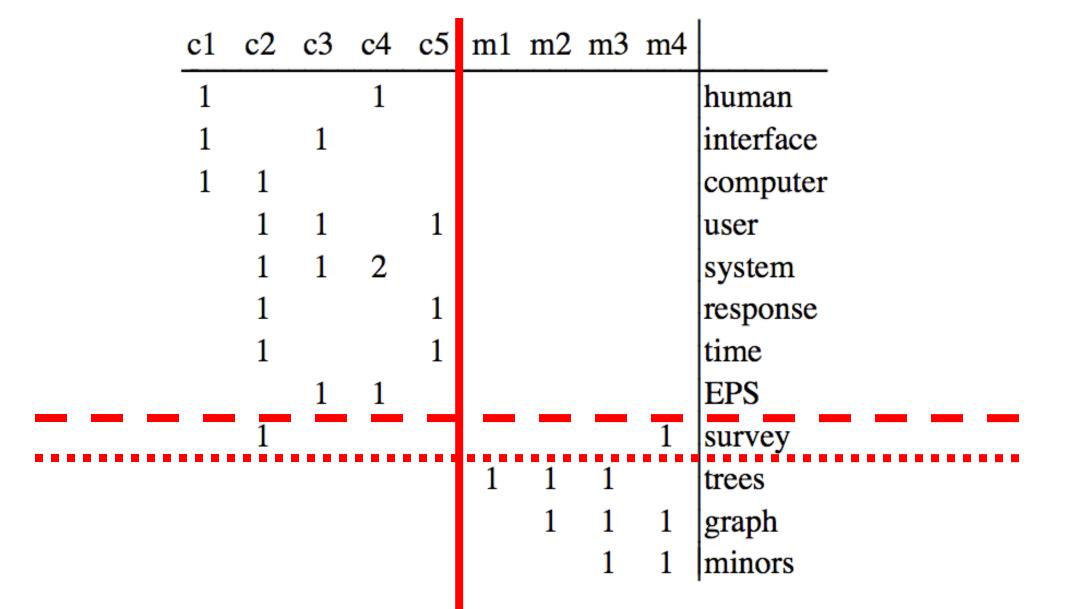
•
$$IDF(t) = -log_2 \frac{df(t)}{D}$$

- tf * IDF weighting
 - Assumes (too much) indep

Bellcore Example

- Example of term by document matrix
 - A document \approx a bag of words
 - A word \approx a bag of documents
 - You shall know a word by the company it keeps
- Example of SVD for dimension reduction
 - Suggestion: reducing dimensions \rightarrow better separation of classes of interest
- Motivate latent dimensions
 - as a method to embed both terms and documents
 - into a common (unified) vector space

Bellcore's Example: Bag of Words + SVD


http://wordvec.colorado.edu/papers/Deerwester_1990.pdf

- c1 Human machine *interface* for Lab ABC *computer* applications
- c2 A *survey* of *user* opinion of computer *system response time*
- c3 The EPS *user interface* management *system*
- c4 *System* and *human system* engineering testing of EPS
- c5 Relation of *user*-perceived *response time* to error measurement
- m1 The generation of random, binary, unordered *trees*
- m2 The intersection *graph* of paths in *trees*
- m3 *Graph minors* IV: Widths of *trees* and well-quasi-ordering
- m4 *Graph minors*: A *survey*

Term by Documents Matrix

c1	Human machine interface for Lab ABC computer applications	c 1	c2	c3	c4	c5	m1	m2	m3	m4	
c2	A survey of user opinion of computer system response time	1			1						human
с3	The EPS user interface management system	1 1	1	1							interface computer
c4	System and human system engineering testing of EPS		1	1	•	1					user
c5	Relation of user-perceived response time to error measurement		1	1	2	1					system response
m1	The generation of random, binary, unordered trees		1	1	1	1		_			time EPS
m2	The intersection graph of paths in trees		1				1	1	1	1	survey
m3	Graph minors IV: Widths of trees and well-quasi- ordering						1	1 1	1 1 1	1	trees graph
m4	Graph minors: A survey								1	1	minors

Term by Document Matrix

Singular Value Decomposition (SVD)

- $M \approx U D V^T$
- D is diagonal
 - Eigenvalues
 - Sorted from largest to smallest
- U and V are Eigenvectors
 - Orthogonal and unit length
 - $U^T U = I$
 - $V^T V = I$

- $cos(M, M) = MM^T$ • $U D V^T (U D V^T)^T$
 - $U D V^T (V D U^T)$
 - $UD^2 U^T$
- $M \rightarrow UD$
 - Plus dimension reduction
 - Replace smaller Eigenvalues with 0

Dimension Reduction

- Standard Recipe
 - Set smaller Eigenvalues to 0
- Interpretation
 - L2 optimality (least squares)
- Recall that Eigenvalues are sorted from largest to smallest

- Motivation for dimension reduction
 - Computational resources:
 - Space
 - Specter: $M \in \mathbb{R}^{N \times K}$
 - N is 200M documents
 - K is 768 (BERT hidden layer)
 - $MM^T \in \mathbb{R}^{N \times N}$ (*very* large)
 - Time
 - Statistical convenience:
 - Smoothing (soft thesaurus)
 - Replace zeros with small values
 - Computational convenience:
 - Approximate nearest neighbors
 - <u>https://pypi.org/project/annoy/</u>

SVD and PCA

SVD (Singular Value Decomposition)

- $M \approx U D V^T$
- D: Eigenvalues
- U: Eigenvectors
- *M* need not be square
 - (just non-singular)

PCA (Principal Componenet Analysis)

- $Q \propto X^T X = W \Lambda W^T$
- Q is square by construction
 - Λ: Eigenvalues
 - W: Covariances
 - Diagonal of *W* are variances

Dimension Reduction in R bellcore $\approx U D V^T$

bellcore =

.Dim = c(12, 9),

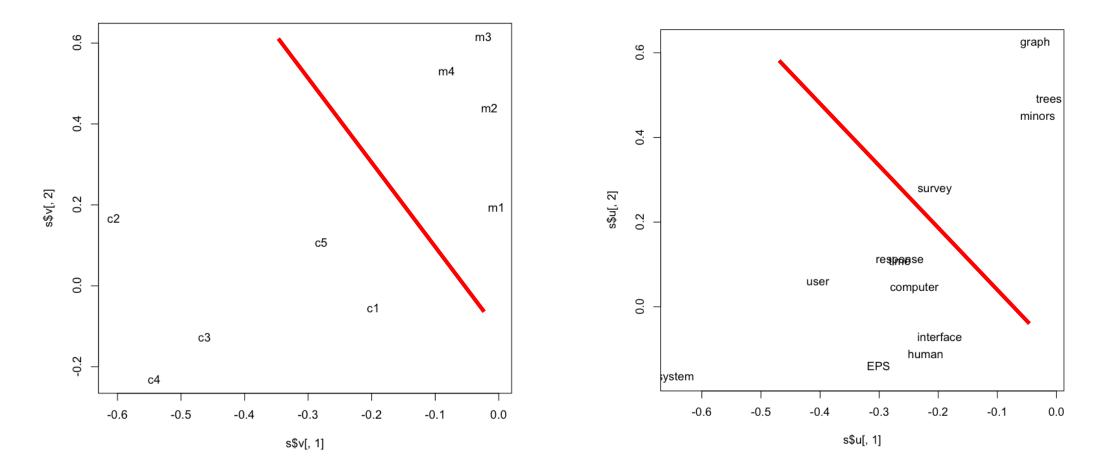
.Dimnames = list(c("human", "interface", "computer", "user", "system", "response", "time", "EPS", "survey", "trees", "graph", "minors"),

c("c1", "c2", "c3", "c4", "c5", "m1", "m2", "m3", "m4"))) b = svd(bellcore)

b2 = b\$u[,1:2] %*% diag(b\$d[1:2]) %*% t(b\$v[,1:2])

dimnames(b2) = dimnames(bellcore)

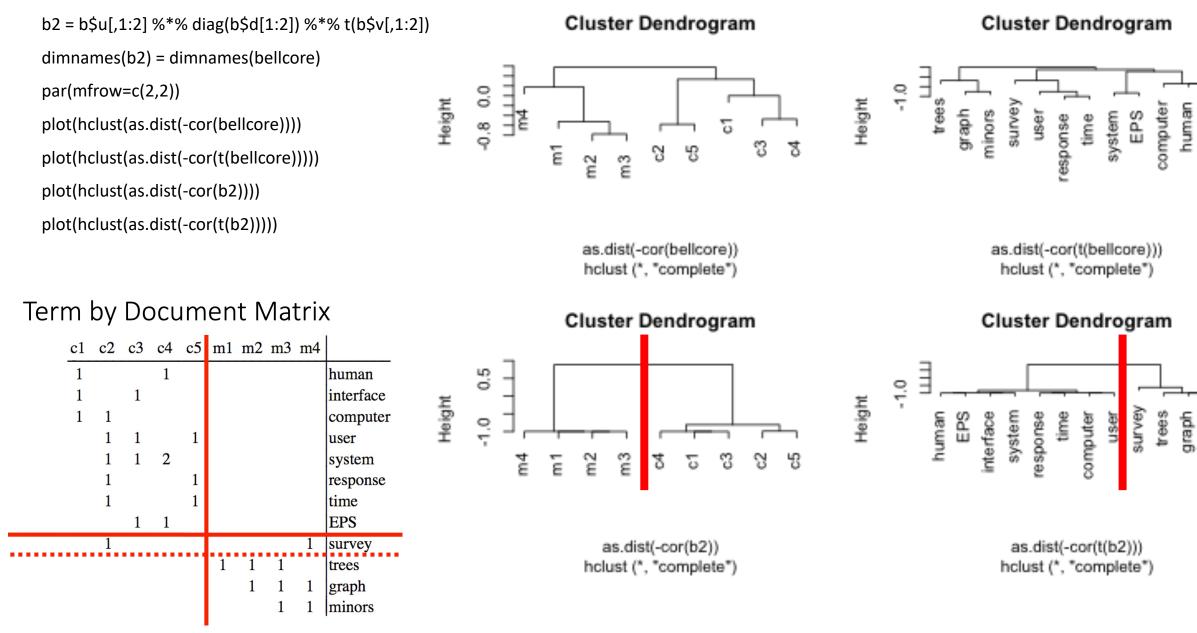
par(mfrow=c(2,2))


plot(hclust(as.dist(-cor(bellcore))))

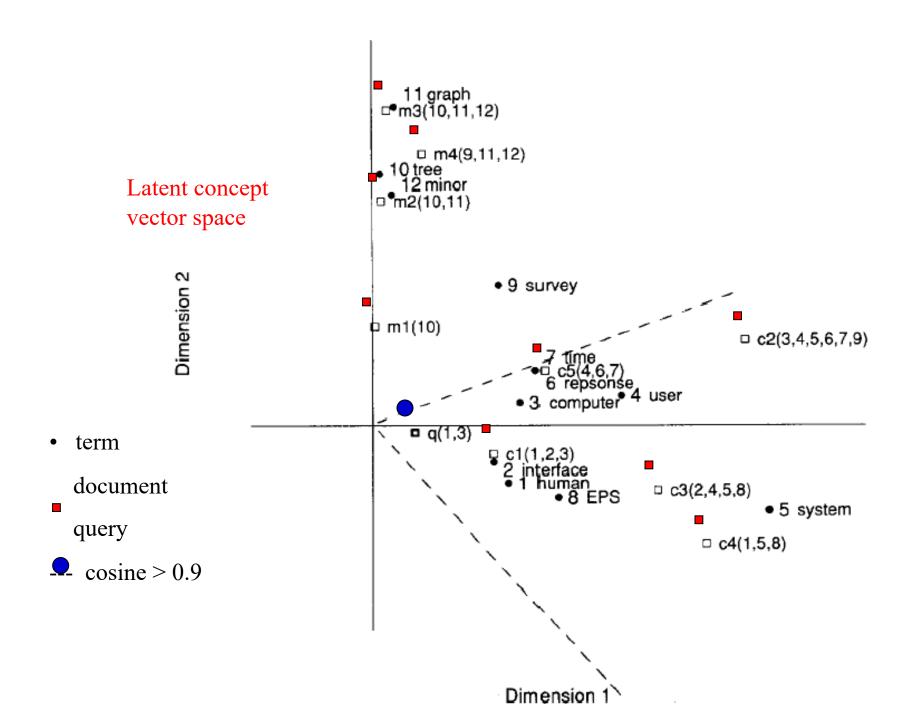
plot(hclust(as.dist(-cor(t(bellcore)))))

plot(hclust(as.dist(-cor(b2))))

plot(hclust(as.dist(-cor(t(b2)))))


SVD maps terms & docs into internal dimensions

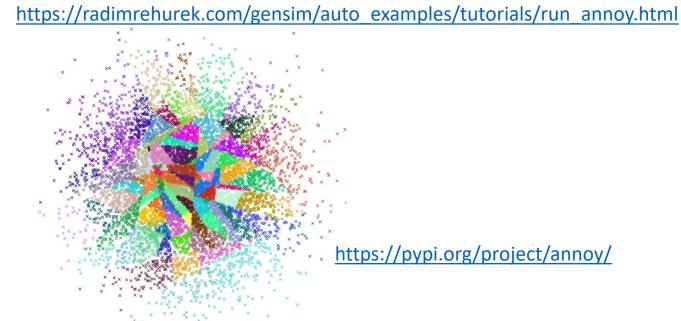
bellcore $\approx U D V^T$


c 1	c2	c3	c4	c5	m1	m2	m3	m4				
1			1						human		G	graph
1		1							interface		0.6	
1	1								computer		4	tree minors
	1	1		1					user		0.4	
	1	1	2						system	b\$u[, 2]		survey
	1			1					response	n\$d	0.2	_
	1			1					time			respagese user computer
		1	1						EPS		0.0	user computer
	1							1	survey			interface stem EPS
					1	1	1		trees			
						1	1	1	graph			-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
							1	1	minors			b\$u[, 1]

b = svd(bellcore)

interface

minors



Approximate Nearest Neighbors (ANN)

- Indexing time:
 - Input: Embedding $M \in \mathbb{R}^{N \times K}$
 - Output: Indexes
- Query time:
 - Input:
 - Embedding, Indexes, query
 - Query: $q \in \mathbb{R}^{K}$
 - Output: candidates, $c \in \mathbb{R}^{K}$
 - where *c* is near *q*
 - sorted by sim(q, c)

from gensim.similarities.annoy import AnnoyIndexer

100 trees are being used in this example annoy_index = AnnoyIndexer(model, 100) # Derive the vector for the word "science" in our model vector = wv["science"] # The instance of AnnoyIndexer we just created is passed approximate_neighbors = wv.most_similar([vector], topn=11, indexer=annoy_index) # Neatly print the approximate_neighbors and their corresponding cosine similarity values print("Approximate Neighbors") for neighbor in approximate_neighbors: print(neighbor)

Machine Translation

<u>https://web.stanford.edu/~jurafsky/slp3/13.pdf</u>

