CS6120: Lecture 10 Lexical Semantics

Kenneth Church

https://kwchurch.github.io/

Open letter to all EU leaders

GARY MARCUS

NOV 20

READ IN APP 7

20 November 2023

Dear European leaders,

The recent events at OpenAI are likely going to lead to considerable, unpredictable instability.

The schisms on display there highlight the fact that we cannot rely purely on the companies to self-regulate AI, wherein even their own *internal* governance can be deeply conflicted.

Please don't gut the EU AI Act; we need it now more than ever.

Sincerely,

Gary Marcus

Gary Marcus is a leading expert on AI who testified to the US Senate

Judiciary Subcommittee. An Emeritus Professor at NYU, he is the author of
five books, and CEO Founder of two AI companies, one acquired by Uber.

Please consider sharing this post.

Commercial Applications: Lexical Semantics

- Ad for Ground News: https://youtu.be/nPZPrs2Ufg?t=1137
- BOTUS:

https://www.npr.org/sections/money/2017/04/07/522897876/meet-

botus-planet-money-s-stock-trading-twitter-bot

Knowledge Acquisition Bottleneck: Bar-Hillel (1960) Word-Sense Disambiguation (WSD) is "AI Complete"

1. Bar-Hillel's Characterization of the Word-Sense Disambiguation Problem

Word sense disambiguation has been recognized as a major problem in natural language processing research for over forty years. One can find a number of early references, e.g., Kaplan (1950), Yngve (1955), Bar-Hillel (1960), Masterson (1967). Early on, there was a clear awareness that word-sense disambiguation is an important problem to solve: "The basic problem in machine translation is that of multiple meaning" (Masterson, 1967). But unfortunately, there was also a clear awareness that the problem is very difficult. Bar-Hillel, who had been one of the early leaders in machine translation, abandoned the field when he could not see how a program could disambiguate the word *pen* in the very simple English discourse:

Little John was looking for his toy box. Finally he found it.

The box was in the pen.

John was very happy.

Bar-Hillel (1960, p. 159) argued that:

Assume, for simplicity's sake, that *pen* in English has only the following two meanings: (1) a certain writing utensil,

(2) an enclosure where small children can play. I now claim that no existing or imaginable program will enable an electronic computer to determine that the word *pen* in the given sentence within the given context has the second of the above meanings, whereas every reader with a sufficient knowledge of English will do this "automatically."

A method for disambiguating word senses in a large corpus (Gale, Church & Yarowsky, 1991)

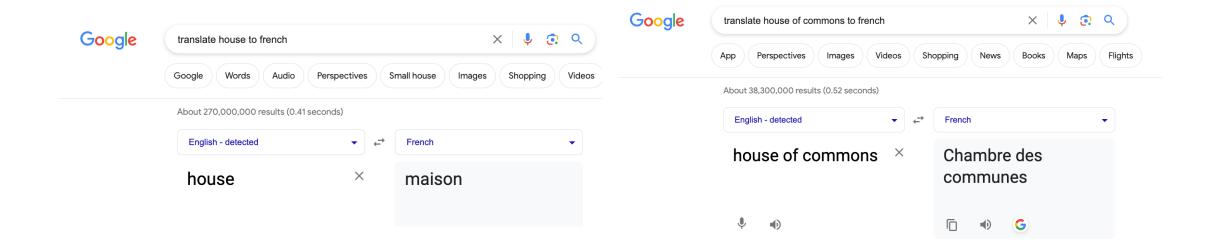
Paths Forward

• Tasks:

- Word-Sense Disambiguation, Metaphor
- Idioms
- NER (Named Entity Recognition)
- Linking
- ...

- Rules
 - Assume productive processes (e.g., compositionality)
- Lexical Resources
 - Dictionaries,
 - Ontologies (WordNet, Cyc)
- Corpora
- Large Language Models (LLMs)

house → maison | Chambre



We took the initiative in assessing and amending current pris initiative evaluer modifier

legislation and policies to ensure that they reflect lois politiques afin correspondent

a broad interpretation of the charter genereuse interpretation charte

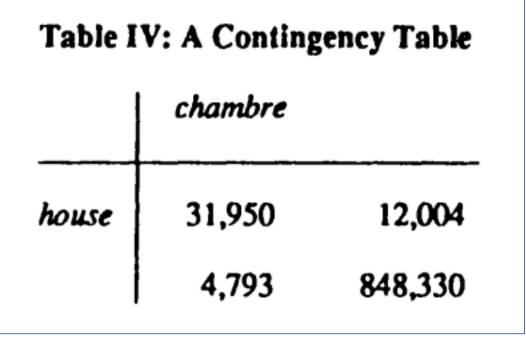


Table I: Contextual Clues for Sense Disambiguation					
Word	Sense	Contextual Clues			
drug	medicaments	prices, prescription, patent, increase, generic, companies, upon, consumers, higher, price, consumer, multinational, pharmaceutical, costs			
drug	drogues	abuse, paraphernalia, illicit, use, trafficking, problem, food, sale, alcohol, shops, crime, cocaine, epidemic, national, narcotic, strategy, head, control, marijuana, welfare, illegal, traffickers, controlled, fight, dogs			
sentence	peine	inmate, parole, serving, a, released, prison, mandatory, judge, after, years, who, death, his, murder			
sentence	phrase	I, read, second, amended, ", ", protects, version, just, letter, quote, word,, last, amendment, insults, assures, quotation, first			

Table II: Six Polysemous Words					
English	French	sense	N		
duty	droit	tax	1114		
	devoir	obligation	691		
drug	médicament	medical	2992		
	drogue	illicit	855		
land	terre	property	1022		
	pays	country	386		
language	langue	medium	3710		
	langage	style	170		
position	position	place	5177		
	poste	job	577		
sentence	peine	judicial	296		
	phrase	grammatical	148		

Table V: Sample Concordances of duty (split into two senses)

Sense	Examples (from Canadian Hansards)			
tax	fewer cases of companies paying >duty< and then claiming a refund and impose a countervailing >duty< of 29,1 per cent on candian exports of the united states imposed a >duty< on canadian saltfish last year			
obligation	it is my honour and >duty< to present a petition duly approved working well beyond the call of >duty SENT i know what time they start in addition, it is my duty< to present the government's comments			

$$\frac{L(sense_1)}{L(sense_2)} \approx \prod_{tok \ in \ context} \frac{Pr(tok|sense_1)}{Pr(tok|sense_2)}$$

Metaphor: Classic Hard Problem in NLP

- Stereotypes: <u>Get Smart</u>
- Considerable literature
 - Carbonell (1980) https://aclanthology.org/P80-1004
 - Fass & Wilks (1983) https://aclanthology.org/J83-3004
 - Martin (1990) A Computational Model of Metaphor Interpretation
 - Hobbs (1992) Metaphor and Abduction
 - Gedigian et al (2006) https://aclanthology.org/W06-3506
 - Krishnakumaran and Zhu (2007) https://aclanthology.org/W07-0103
 - Lakoff (2008) Women, Fire and Dangerous Things
 - Lakoff and Johnson (2008) *Metaphors to Live By*
 - Shutova (2010) https://aclanthology.org/P10-1071
 - Mohammad et al (2016) https://aclanthology.org/S16-2003

- cover all the bases
- drop the ball
- dunk
- fumble
- get on base
- hit a home run
- out in left field
- punt
- ragging the puck
- run out the clock
- sticky wicket
- strike out

Repositories

- HuggingFace
- LDC (Linguistic Data Consortium)
- NLTK

WordNet: An Example of an Ontology

https://en.wikipedia.org/wiki/WordNet

Knowledge structure [edit]

Both nouns and verbs are organized into hierarchies, defined by hypernym or *IS A* relationships. For instance, one sense of the word *dog* is found following hypernym hierarchy; the words at the same level represent synset members. Each set of synonyms has a unique index.

```
dog, domestic dog, Canis familiaris
```

```
canine, canid

carnivore

placental, placental mammal, eutherian, eutherian mammal

mammal

vertebrate, craniate

chordate

animal, animate being, beast, brute, creature, fauna
```

https://aclanthology.org/2021.emnlp-main.501.pdf

Relation	Relation Edges		Edges
hypernyms	37,221	hyponyms	37,221
derivationally related forms	31,867		
member meronym	7928	member holonum	7928
has part	5142	part of	5148
synset domain topic of	3335	member of domain topic	3341
instance hypernym	3150	instance hyponym	3150
also see	1396		
verb group	1220		
member of domain region	983	synset domain region of	982
member of domain usage	675	synset domain usage of	669
similar to	86		

Table 2: 18 Relations in WN18. By construction, many of these relations have inverses (with similar counts).

IILNAK	CITI TREE VIEW	
MeSH	ICD-10 MeSH	
Anatom	ny [A]	А
Organis	sms [B]	В
Disease	es [C]	C
▼ No	eoplasms 1 indication for 3418 drugs (688 approved, 2730 experimental)	C04
	▼ Neoplasms by Site 1 indication for 48 drugs (30 approved, 18 experimental)	C04.588
	Abdominal Neoplasms 1 indication for 24 drugs (22 approved, 2 experimental)	C04.588.033
	Anal Gland Neoplasms	C04.588.083
	Bone Neoplasms 1 indication for 41 drugs (29 approved, 12 experimental)	C04.588.149
	▼ Breast Neoplasms 1 indication for 1583 drugs (514 approved, 1069 experimental)	C04.588.180
	Breast Carcinoma In Situ 1 indication for 12 drugs (11 approved, 1 experimental)	C04.588.180.130
	Breast Neoplasms, Male 1 indication for 100 drugs (59 approved, 41 experimental)	C04.588.180.260
	Carcinoma, Ductal, Breast 1 indication for 12 drugs (8 approved, 4 experimental)	C04.588.180.390
	Carcinoma, Lobular 1 indication for 3 approved drugs	C04.588.180.437
	Hereditary Breast and Ovarian Cancer Syndrome 1 indication for 5 drugs (3 approved, 2 experimental)	C04.588.180.483
	Inflammatory Breast Neoplasms 1 indication for 44 drugs (36 approved, 8 experimental)	C04.588.180.576
	Triple Negative Breast Neoplasms 1 indication for 294 drugs (89 approved, 205 experimental)	C04.588.180.788
	Unilateral Breast Neoplasms	C04.588.180.800
	Digestive System Neoplasms 1 indication for 60 drugs (33 approved, 27 experimental)	C04.588.274
	Endocrine Gland Neoplasms 1 indication for 16 drugs (11 approved, 5 experimental)	C04.588.322
	Eye Neoplasms 1 indication for 6 drugs (4 approved, 2 experimental)	C04.588.364
	Head and Neck Neoplasms 1 indication for 496 drugs (208 approved, 288 experimental)	C04.588.443
	Hematologic Neoplasms 1 indication for 252 drugs (125 approved, 127 experimental)	C04.588.448

JM23

CHAPTER 23 • WORD SENSES AND WORDNET

```
bass<sup>3</sup>, basso (an adult male singer with the lowest voice)
=> singer, vocalist, vocalizer, vocaliser
   => musician, instrumentalist, player
      => performer, performing artist
         => entertainer
            => person, individual, someone...
               => organism, being
                   => living thing, animate thing,
                      => whole, unit
                         => object, physical object
                            => physical entity
                               => entity
bass<sup>7</sup> (member with the lowest range of a family of instruments)
=> musical instrument, instrument
   => device
      => instrumentality, instrumentation
         => artifact, artefact
            => whole, unit
               => object, physical object
                   => physical entity
                      => entity
```

Figure 23.5 Hyponymy chains for two separate senses of the lemma bass. Note that the chains are completely distinct, only converging at the very abstract level whole, unit.

Tasks

- Word Sense Disambiguation
 - bank → ``money'' bank vs. ``river'' bank
- NER (Named Entity Recognition)
 - Find spans
- Linking: Add hypertext links from texts to resources
 - Wikipedia
 - Pubtator
- Co-reference
 - Which nouns refer to which nouns?
 - Pronoun resolution → Winograd Schema
- Stance, Sentiment, Synonyms vs. Antonyms, Negation

MENTIONS group ∨ sort ∨	
type freq	
Search	
Z Gene	
NRF2	86
PGC-1alpha	28
HO-1	26
PGC-1alpha	12
KEAP1	10
more	
 DISEASE	
MITOCHONDRIAL DYSFUNCTION	10
FATIGUE	6
DUCHENNE MUSCULAR DYSTROPHY	5
MUSCLE WEAKNESS	4
MUSCULAR DYSTROPHY	4
more	
VERBASCOSIDE	107
H2O2	44
OXYGEN	24
MTT	11
ATP	9

PMID37894956 • PMC10607197

2023

Verbascoside Elicits Its Beneficial Effects by Enhancing Mitochondrial Spare Respiratory Capacity and the Nrf2/HO-1 Mediated Antioxidant System in a Murine

Skeletal Muscle Cell Line

Sciandra F, Bottoni P ... Bozzi M • Int J Mol Sci

♣ BiocXML

Muscle weakness and muscle loss characterize many physio-pathological conditions, including sarcopenia and many forms of muscular dystrophy, which are often also associated with mitochondrial dysfunction. Verbascoside, a phenylethanoid glycoside of plant origin, also named acteoside, has shown strong antioxidant and anti-fatigue activity in different animal models, but the molecular mechanisms underlying these effects are not completely understood. This study aimed to investigate the influence of verbascoside on mitochondrial function and its protective role against H2O2-induced oxidative damage in murine C2C12 myoblasts and myotubes pre-treated with verbascoside for 24 h and exposed to H2O2. We examined the effects of verbascoside on cell viability, intracellular reactive oxygen species (ROS) production and mitochondrial function through high-resolution respirometry. Moreover, we verified whether verbascoside was able to stimulate nuclear factor erythroid 2-related factor

- ✓ BIOCONCEPTS
- ✓ GENE
- ✓ DISEASE
- **✓** CHEMICAL
- **✓** MUTATION
- **✓** SPECIES
- **✓** CELLLINE

NAVIGATION

TITLE

- 1. INTRODUCTION
- 2. RESULTS
- 3. DISCUSSION
- 4. MATERIALS AND

METHODS

5. CONCLUSIONS

SUPPLEMENTARY

MATERIALS

AUTHOR CONTRIBUTIONS

DATA AVAILABILITY

STATEMENT

CONFLICTS OF INTEREST

Winograd Schema (GLUE WNLI)

- The trophy doesn't fit in the brown suitcase
 - because it is too large/small.
- What is too large?
 - A. The trophy
 - B. The suitcase

Not much better than chance

CS6120

Task	Metric	Result	Training time
CoLA	Matthews corr	56.53	3:17
SST-2	Accuracy	92.32	26:06
MRPC	F1/Accuracy	88.85/84.07	2:21
STS-B	Pearson/Spearman corr.	88.64/88.48	2:13
QQP	Accuracy/F1	90.71/87.49	2:22:26
MNLI	Matched acc./Mismatched acc.	83.91/84.10	2:35:23
QNLI	Accuracy	90.66	40:57
RTE	Accuracy	65.70	57
WNLI	Accuracy	56.34	24

Table 1	Time	lina	f the	Winograd	Schama	Challenge.
Table 1.	. Hille	IIIIe o	n me	vviiiograu	Scheilla	Chanenge.

Winograd's (1972) thesis introduces the original example. 1972:

2010: Levesque [47] proposes the Winograd Schema Challenge.

The initial corpus of Winograd schemas is created [50]. 2010-2011:

2014: Levesque's Research Excellence talk "On our best behavior" [48].

The Winograd Schema Challenge is run at IJCAI-16. No systems do much better than 2016:

chance [16].

WNLI is incorporated in the GLUE set of benchmarks. BERT-based systems do no 2018:

better than most-frequent-class guessing [91].

Kocijan et al. [43] achieve 72.5% accuracy on WSC273 using pretraining. 2019, May:

Liu et al. [56] achieve 89.0% on WNLI. 2019, June:

2019. Sakaguchi et al. [77] achieve 90.1% on WSC273.

17 November:

from: https://doi.org/10.1016/j.artint.2023.103971

9/11/2023

Winograd Schema (GLUE WNLI)

A Surprisingly Robust Trick for the Winograd Schema Challenge

Vid Kocijan¹, Ana-Maria Creţu², Oana-Maria Camburu^{1,3}, Yordan Yordanov¹, Thomas Lukasiewicz^{1,3}

¹University of Oxford ²Imperial College London ³Alan Turing Institute, London

firstname.lastname@cs.ox.ac.uk, a.cretu@imperial.ac.uk

Abstract

The Winograd Schema Challenge (WSC) dataset Wsc273 and its inference counterpart WNLI are popular benchmarks for natural language understanding and commonsense reasoning. In this paper, we show that the performance of three language models on WSC273 consistently and robustly improves when finetuned on a similar pronoun disambiguation problem dataset (denoted WSCR). We additionally generate a large unsupervised WSClike dataset. By fine-tuning the BERT language model both on the introduced and on the WSCR dataset, we achieve overall accuracies of 72.5% and 74.7% on WSC273 and WNLI, improving the previous state-of-theart solutions by 8.8% and 9.6%, respectively. Furthermore, our fine-tuned models are also consistently more accurate on the "complex" subsets of WSC273, introduced by Trichelair et al. (2018).

to the small existing datasets making it difficult to train neural networks directly on the task.

Neural networks have proven highly effective in natural language processing (NLP) tasks, outperforming other machine learning methods and even matching human performance (Hassan et al., 2018; Nangia and Bowman, 2018). However, supervised models require many per-task annotated training examples for a good performance. For tasks with scarce data, transfer learning is often applied (Howard and Ruder, 2018; Johnson and Zhang, 2017), i.e., a model that is already trained on one NLP task is used as a starting point for other NLP tasks.

A common approach to transfer learning in NLP is to train a language model (LM) on large amounts of unsupervised text (Howard and Ruder, 2018) and use it, with or without further fine-tuning, to solve other downstream tasks. Building on top of a LM has proven to be very suc-

The defeat of the Winograd Schema Challenge

Abstract

The Winograd Schema Challenge—a set of twin sentences involving pronoun reference disambiguation that seem to require the use of commonsense knowledge—was proposed by Hector Levesque in 2011. By 2019, a number of AI systems, based on large pre-trained transformer-based language models and fine-tuned on these kinds of problems, achieved better than 90% accuracy. In this paper, we review the history of the Winograd Schema Challenge and discuss the lasting contributions of the flurry of research that has taken place on the WSC in the last decade. We discuss the significance of various datasets developed for WSC, and the research community's deeper understanding of the role of surrogate tasks in assessing the intelligence of an AI system.

Keywords

Commonsense reasoning; Winograd Schema Challenge

9/11/2023 CS6120 18

Training on Lexical Resources

https://aclanthology.org/2022.lrec-1.676.pdf

$$rel \sim w_1 + w_2 \tag{1}$$

The fine-tuning code is very simple. We modified an example from HuggingFace² in straightforward ways.³ This code takes a pretrained net as input, and a set of triples, and outputs a fine-tuned net.

$text_1$	$text_2$	y_1	y_2
good	bad	-3.95	4.54
bad	evil	4.44	-5.00
good	benevolent	4.43	-5.05
bad	benevolent	-3.44	4.16
good	terrorist	-3.43	4.10
bad	terrorist	4.48	-5.10

Table 1: Inference: synonymy iff $y_1 > y_2$

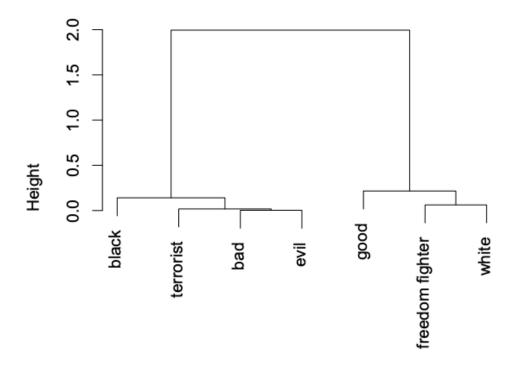
$$y \sim text_1 + text_2 \tag{2}$$

This notation is inspired by general linear models in R⁶ (Guisan et al., 2002). We will start with binary classification (logistic regression). Later, classification will be replaced with regression when we consider VAD (Valance, Arousal and Dominance) distances in §5.

$text_1$	$text_2$	y_1	y_2
freedom fighter	good	2.33	-2.56
freedom fighter	bad	-1.50	2.19
white supremacist	good	-2.05	2.91
white supremacist	bad	1.67	-1.61

Table 2: Mutiword Expressions (MWEs)

scipy dendrogram



as.dist(1 - cor(m)) hclust (*, "complete")

Figure 1: Clustering of correlations in Table 8 (bottom), illustrating biases in model.

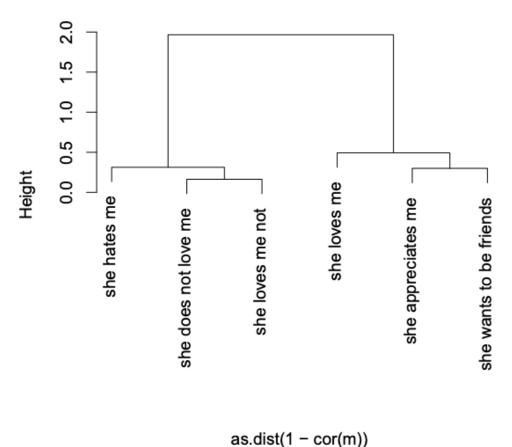
Clustering in Scikit-Learn

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. near- est-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. near- est-neighbor graph)
Ward hierarchical clustering	number of clusters or distance threshold	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters or distance threshold, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven clus- ter sizes	Distances between near- est points
OPTICS	minimum cluster membership	Very large n_samples, large n_clusters	Non-flat geometry, uneven clus- ter sizes, variable cluster density	Distances between points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance be- tween points

https://scikit-learn.org/stable/modules/clustering.html

Cluster Dendrogram 2.0 1.5 0: Height 0.5 inrockable 0.0 ungrockable grock grockable no grockable sans grock Unrockable Grockable grockless Grockless

Cluster Dendrogram



as.dist(1 - cor(m)) hclust (*, "complete")

Figure 4: Clustering of correlations of logits of all pairs of six sentences.

hclust (*, "complete")

Figure 3: Clustering of morphological variants and translations of an out-of-vocabulary (OOV) word: *grock*. Base model: bert-base-multilingual-cased.

. .

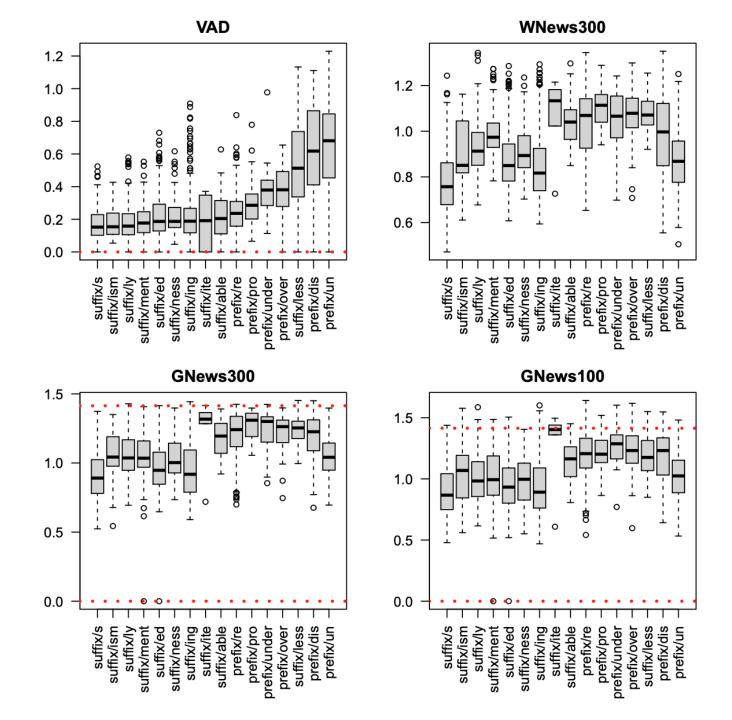
https://saifmohammad.com/WebPages/nrc-vad.html https://saifmohammad.com/WebDocs/VAD-talk.pdf

word	Val	Arousal	Dom	Dist
open	0.620	0.480	0.569	0.00
unfold	0.612	0.510	0.520	0.06
reopen	0.656	0.528	0.568	0.06
close	0.292	0.260	0.263	0.50
closed	0.240	0.164	0.318	0.55
undecided	0.286	0.433	0.127	0.56

Table 12: Words above the double line are near *open*. The last column is the Euclidean distance to *open*.

Church et al., Emerging trends: General fine-tuning (gft) Natural Language Engineering, 28(4), 519-535. doi:10.1017/S1351324922000237

-Data	-eqn
H:glue,cola	classify: label ∼ sentence
H:glue,sst2	classify: label \sim sentence
H:glue,wnli	classify: label \sim sentence
H:glue,mrpc	classify: label \sim sentence1 $+$ sentence2
H:glue,rte	classify: label \sim sentence1 $+$ sentence2
H:glue,qnli	classify: label \sim question $+$ sentence
H:glue,qqp	classify: label \sim question1 $+$ question2
H:glue,sstb	regress: label \sim sentence1 $+$ sentence2
H:glue,mnli	classify: label \sim premise $+$ hypothesis
H:squad	classify_spans: answers \sim question $+$ context
H:squad_v2	classify_spans: answers \sim question $+$ context
H:tweet_eval,hate	classify: label \sim text
H:conll2003	classify_tokens: pos_tags \sim tokens
H:conll2003	classify_tokens: ner_tags \sim tokens
H:conll2003	classify_tokens: chunk_tags \sim tokens
H:timit_asr	ctc: text \sim audio
H:librispeech_asr	ctc: text \sim audio
C:\$gft/datasets/VAD/VAD	regress: Valence + Arousal + Dominance ~ Word



Lexical Resources

International Conference on Language Resources and Evaluation (LREC)

- Corpora
 - Non-parallel:
 - Brown, Penn Treebank, Wikitext
 - Parallel:
 - Hansards, Europarl
- Ontologies
 - WordNet
 - MeSH (Medical Subject Headings)

- Dictionaries
 - CMU Dict
- Thesaurus
 - Roget's
 - Synonyms and Antonyms
 - NRC-VAD
- Knowledge Graphs
 - <head, relation, tail>
 - FreeBase (<u>FB15k</u>)
 - WordNet (<u>WN18RR</u>)

Example of Parallel Corpus https://youtu.be/1jeDPcWEYX0?t=80

	A	В	С
1	English	Spanish	French
2	"What's it grang to be then, eh?"	−¿Y ahora qué pasa, eh?	— Bon, alors ça sera quoi, hein ?
	There was me, that is Alex, and my three droogs, that is	Estábamos yo, Alex, y mis tres drugos, Pete, Georgie y el	Il y avait moi, autrement dit Alex, et mes trois drougs, autrement
	Pete, Georgie, and Dim, Dim being really dim, and we sat	Lerdo, que realmente era lerdo, sentados en el bar lácteo	dit Pierrot, Jo et Momo, vraiment momo le Momo, et on était
	- 1	Korova, exprimiéndonos los rasudoques y decidiendo qué	assis au Korova Milkbar à se creuser le rassoudok pour savoir
_		podríamos hacer esa noche, en un invierno oscuro, helado y	ce qu'on ferait de la soirée, – une putain de soirée d'hiver,
3		bastardo aunque seco.	branque, noire et glaciale, mais sans eau.
		El bar lácteo Korova era un mesto donde servían leche-plus,	Le Korova Milkbar, c'était un de ces messtots où on servait du
		y quizás ustedes, oh hermanos míos, han olvidado cómo	lait gonflé, et peut-être avez-vous oublié, Ô mes frères, à quoi
		eran esos mestos, pues las cosas cambian tan scorro en	ressemblait ce genre de messtot, tellement les choses
	very quick to forget, newspapers not being read much	estos días, y todos olvidan tan rápido, aparte de que tampoco	changent zoum par les temps qui courent et tellement on a vite
4	neither.	se leen mucho los diarios.	fait d'oublier, vu aussi qu'on ne lit plus guère les journaux.
5	Well, what they sold there was milk plus something else.	Bueno, allí vendían leche con algo más.	Bref ce qu'on y vendait c'était du lait gonflé à autre chose.
	They had no license for selling liquor, but there was no law	No tenían permiso para vender alcohol, pero en ese tiempo	Le Korova n'avait pas de licence pour la vente de l'alcool, mais il
	yet against prodding some of the new veshches which	no había ninguna ley que prohibiese las nuevas vesches que	n'existait pas encore de loi interdisant d'injecter de ces nouvelles
	they used to put into the old moloko, so you could peet it	acostumbraban meter en el viejo moloco, de modo que se	vesches qu'on mettait à l'époque dans le moloko des familles,
	with vellocet or synthemesc or drencrom or one or two	podía pitearlo con velocet o synthemesco o drencrom o una	ce qui faisait qu'on pouvait le drinker avec de la vélocette, du
	other veshches which would give you a nice quiet	o dos vesches más que te daban unos buenos, tranquilos y	synthémesc ou du methcath, ou une ou deux autres vesches, et
	horrorshow fifteen minutes admiring Bog And All His Holy	joroschós quince minutos admirando a Bogo y el Coro	s'offrir quinze gentilles minutes pépère tzarrible à mirer Gogre et
	Angels and Saints in your left shoe with lights bursting all	Celestial de Ángeles y Santos en el zapato izquierdo,	Tous Ses Anges et Ses Saints dans son soulier gauche, le
6		mientras las luces te estallaban en el mosco.	mozq plein à péter de lumières.

Applications for Parallel Corpora

- Machine Translation
- Word Sense Disambiguation

$$\prod_{\substack{w \text{ in doc}}} \frac{Pr(w|rel)}{Pr(w|irrel)}$$
 Information Retreival (IR)

$$\prod_{w \text{ in doc}} \frac{Pr(w|author_1)}{Pr(w|author_2)}$$
 Author Identification

In the sense disambiguation application, the 100-word context surrounding instances of a polysemous word (e.g., sentence) are treated very much like a document.¹

$$\prod \frac{Pr(w|sense_1)}{Pr(w|sense_2)}$$
 Sense Disambiguation

$$\prod_{w \text{ in context}} Pr(w | Roget \ Category_i)$$

The program can also be run in a mode where it takes unrestricted text as input and tags each word with its most likely Roget Category. Some results for the word crane are presented below, showing that the program can be used to sort a concordance by sense.

Input		Output
for supplying power for	cranes were used to lift heavy cranes, hoists, and lifts crane is often used .SB This	TOOLS TOOLS
are more closely related to	cranes build a nest of vegetation cranes and rails .SB They range crane species are in danger of	ANIMAL ANIMAL ANIMAL

Table 4 A bilingual concordance.

bank/banque ("money" sense)	
	bank of experts. SENT i know several people who a banque d' experts. SENT je connais plusieurs pers
	bank of canada have frequently on behalf of the ca banque du canada ont fréquemment utilisé au co
reduced by over 800 per cent in one week through us de 800 p. 100 en une semaine à cause d'une	bank action. SENT there was a haberdasher who wou banque. SENT voilà un chemisier qui aurait appr
bank/banc ("place" sense)	
	bank issue which was settled between canada and th banc de george. SENT c'est dans le but de ré
	bank were surrendered by this government. SENT th banc. SENT en fait, lors des négociations de l
	bank went down the tube before we even negotiated banc ont été liquidés avant même qu' on ai

Co-Reference

- Slides from last term
- JM26
- Two Noriegas