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Recap: Transformer
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I CBURY  Multihead self-attention: Each of the multihead self-attention layers is provided with its own
set of key, query and value weight matrices. The outputs from each of the layers are concatenated and then
projected down to d, thus producing an output of the same size as the input so layers can be stacked.

[llustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf
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Recap: Typical Architectures
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ISR NE]  Four architectures for NLP tasks. In sequence labeling (POS or named entity tagging) we map

each input token x; to an output token y;. In sequence classification we map the entire input sequence to a single
class. In language modeling we output the next token conditioned on previous tokens. In the encoder model we
have two separate RNN models, one of which maps from an input sequence X to an intermediate representation
we call the context, and a second of which maps from the context to an output sequence y.

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Agenda

* Applications
* Translation
* Question Answering

* Other Modality
* Speech to text
* Text to Speech
* Vision



Machine Translation is Hard

* Because of linguistic divergences
* Morphology
* Syntax
* semantics

* Linguistic typology: studies cross-linguistic similarities and differences



Word Order Typology

* SVO: German, French, English, Mandarin
e SOV: Hindi, Japanese
* VSO: Irish, Arabic

English:  He wrote a letter to a friend

Japanese: tomodachi ni tegami-o kaita
friend to letter  wrote

Arabic: katabt risala li sadqg
wrote letter to friend

[llustration from https://web.stanford.edu/~jurafsky/slp3/13.pdf
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Lexical Divergences

* En-> Es
* bass -> lubnia/bajo

e En->Zh

 Brother -> Bf/35
* Word Sense Disambiguation

* Lexical Gap
e Zh->En: = ->7?

Examples from https://web.stanford.edu/~jurafsky/slp3/13.pdf
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Morphological Topology

* Base form: run
* Present tense: Running, past tense: ran
* [solating languages: Viethamese (1 morpheme per word)

* Polysynthetic language: Siberian Yupik (many morphemes per word)



Classical Approach

Statistical Machine Translation
* Bayesian Rule
T" =arg mTaXP(TIS) = arg mTaXP(SIT)P(T)
* P(S|T): translation model, faithfulness
* P(T) : language model, fluency
* IBM models:

e Alignment a
 P(S|T) = ). P(S,a|T)



Alignment

Target

Source
Marie a traversé le lac a la nage
Mary
swam
across
the
lake

Illustration from https://courses.grainger.illinois.edu/CS447/fa2020/Slides/Lecture14.pdf
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Modern Approach
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On the x;’s and y;’s

* Option1: Word, too huge vocabulary, cannot handle OOV
» Option2: character, too long input, inferior performance

* Option3: subwords

* Several methods to obtain
e Byte-pair encoding (BPE)
* Wordpiece
* Sentencepiece



Byte Pair Encoding (BPE)

* Merge the most frequent pair of tokens

corpus vocabulary

5 low _ _,d, e, 1, 1, n, o, r, s, t, w
2 lowest _

6 newer _

3 wider _

2 new_

corpus vocabulary

5 l ow _ ., d, e, 1, 1, n, o, r, s, t, w, er
2 lowest _

6 newer _

3 wider _

2 new_
Example from https://web.stanford.edu/~jurafsky/slp3/13.pdf
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Byte Pair Encoding (BPE)

corpus vocabulary

5 low _ _,d,e,i,1,n,0,r,s, t,w, er, er__
2 lowest __

6 newer_

3 wider_

2 new_

corpus vocabulary

5 l ow _ _,d,e,1,1,n,0, 1, s, t,w, er, er_, ne
2 lowest _

6 ne w er_

3 wider_

2 ne w _

Example from https://web.stanford.edu/~jurafsky/slp3/13.pdf
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Natural Language Engineering (2020), 26, pp. 375-382 AMBRIDGE
doi:10.1017/51351324920000145 g\IIVERSITY PR?SS

DraWbaCk Of BPE EMERGING TRENDS

Emerging trends: Subwords, seriously?

Kenneth Ward Church

* Small non-meaningful subwords ...

E-mail: kenneth.ward.church@gmail.com

Abstract

Subwords have become very popular, but the BERT* and ERNIE® tokenizers often produce surprising
results. Byte pair encoding (BPE) trains a dictionary with a simple information theoretic criterion that
sidesteps the need for special treatment of unknown words. BPE is more about training (populating a
dictionary of word pieces) than inference (parsing an unknown word into word pieces). The parse at infer-
ence time can be ambiguous. Which parse should we use? For example, “electroneutral” can be parsed as
electron-eu-tral or electro-neutral, and “bidirectional” can be parsed as bid-ire-ction-al and bi-directional.
BERT and ERNIE tend to favor the parse with more word pieces. We propose minimizing the number of
word pieces. To justify our proposal, a number of criteria will be considered: sound, meaning, etc. The pre-
fix, bi-, has the desired vowel (unlike bid) and the desired meaning (bi is Latin for two, unlike bid, which
is Germanic for offer).

Original: corrupted Original: Completely preposterous suggestions
BPE: cor rupted BPE: Comple t ely prep ost erous suggest ions

Example from https://web.stanford.edu/~jurafsky/slp3/13.pdf
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Wordpiece

* Initialize with a set of all characters

* Repeat till there are V wordpieces
* Train an n-gram language model, using the current set

* Consider concatenating two word pieces, so that the resulting n-gram has
biggest likelihood increase



SentencePlece

* A library implementing BPE and another method called Unigram

* How Unigram works
* Fix token set, learn probabilistic split of words (into these tokens), via EM
* Prune away subwords with low probabilities

Original: corrupted Original: Completely preposterous suggestions
BPE: cor rupted BPE: Comple t ely prep ost erous suggest ions
Unigram: corrupt ed Unigram: Complete ly pre post er ous suggestion s

Example from https://web.stanford.edu/~jurafsky/slp3/13.pdf
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What about Chinese

* Languages without space separating words
* Run segmenter first, e.g.,

>>> import jileba

>>> s="EEPERNERAKFEEESN"

Python ,iEba >>> " ", join(jieba.cut(s))

' hE RERER A¥ F AR



Architecture
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IDTUCBIIE] The encoder-decoder transformer architecture for machine translation. The encoder uses the
transformer blocks we saw in Chapter 9, while the decoder uses a more powerful block with an extra cross-
attention layer that can attend to all the encoder words. We’ll see this in more detail in the next section.

[llustration from https://web.stanford.edu/~jurafsky/slp3/13.pdf
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[llustration from https://web.stanford.edu/~jurafsky/slp3/13.pdf

Q= WQHdec[i—l]; K= WKHenc; V = WYH%*<

CrossAttention(Q,K,V) = softmax(

QKT
Vg

)v
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arXiv
https://arxiv.org » cs

C rO S S Atte n t i O n i S a ‘ i g n m e nt l\;\eural Machine T;anslation by Jointly Learning to Align ...

by D Bahdanau - 2014 - Cited by 31472 — With this new approach, we achieve a translation
performance comparable to the existing state-of-the-art phrase-based system on the task of ...
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) a ACL Anthology
https://aclanthology.org > ... 3
E Xte n S I O n S STACL: Simultaneous Translation with Implicit Anticipation ...

by M Ma - 2019 - Cited by 194 — Simultaneous translation, which translates sentences before
they are finished, is use- ful in many scenarios but is notoriously dif- ficult due to word-order ...
* Simultaneous Translation e e

President Bush met [With'\Putin®Sins Mioscow

: \
s 16
' 28
T 9
: £
- - - = = = L
o - )
5 f E read
[¢] i e
2 i >
) ! . .
f — write
]
!

Figure 1: Our wait-k model emits target word y; given
source-side prefix zj...x:1r—1, often before seeing
the corresponding source word (here k=2, outputing
ys="“met” before r7=“huiwn’). Without anticipation, a
S-word wait is needed (dashed arrows). See also Fig. 2.



Extensions

* Multilingual Translation
* Language encoding token: [, , [;

h = encoder(x,/;)

yi+1 = decoder(h,l;,y1,...,y;)) Vie([l,...,m]



UNSUPERVISED MACHINE TRANSLATION
USING MONOLINGUAL CORPORA ONLY

Extensions

Guillaume Lample | i , Alexis Conneau { , Ludovic Denoyer | , Marc’Aurelio Ranzato }
1 Facebook Al Research,
T Sorbonne Universités, UPMC Univ Paris 06, LIP6 UMR 7606, CNRS

* Unsupervised Machine Translation
* Source and target text has no correspondence

e Method

* |nitialize: Word-to-word translation (bilingual lexicon induction)

* Train encoder-decoder by

* Sample source sentence x, translation y using current model
* Train as if supervised case, using (x, y)



Agenda

* Applications
* Translation
* Question Answering

* Other Modality
* Speech to text
* Text to Speech
* Vision



Paradigms of QA

* Open domain QA
* Knowledge-based QA
* Language Model, e.g., ChatGPT



Open domain QA Setup

* Information Retrieval (IR)
* Reading Comprehension: extract a range of text as answer

query
Retriever > Reader
Q: When was F ¥ docs | 4 L, A: 1791

the premiere of ——| : " == '

& ) _ = [CLS] q1 q2 [SEP] d1 d2
The Magic Flute” = E \ )

—» Relevant
2 Docs
Indexed Docs

IDTOICBERL)  [R-based factoid question answering has two stages: retrieval, which returns relevant doc-
uments from the collection, and reading, in which a neural reading comprehension system extracts answer
spans.

Examples from https://web.stanford.edu/~jurafsky/slp3/14.pdf
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Information Retrieval

Document

____* | Inverted |
Index sl
document collection Search }------ >

______ Query [ query ).~
query ( Processing )

Ranked
Documents

13T ENY  The architecture of an ad hoc IR system.



IR based on tf-idf

* Encode each document using tf-idf
* Recap for tf-idf
tf; 4 = logo(count(z,d)+ 1)

, N
ldft = loglo d_f
t

th-idf(¢,d) = tf, 4 -idf;

* Score(q, d) = cos(q, d), where q, d are tf-idf vectors for query and
document



IR based on Deep nets

* Drawback of tf-idf approach:

* Query words must overlap with those in document

* Instead, we could encode with dense vectors

hq hy

( ENCODER o1y ) (ENCODER 5 ment)
F F 1 f f f
ql gn di dn

13T B ER] BERT bi-encoder for computing relevance of a document to a query.

Examples from https://web.stanford.edu/~jurafsky/slp3/14.pdf
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Reading Comprehension

* In the retrieved doc, Find span of text as answer

* Example setup:
* Input:
e Question: How tall is Mt. Everest?
* Passage: “... Reaching 29,029 feet at its summit, Mt. Everest stands ...”

* Return:
e 29,029 feet

* Formulated into span labeling problem



Span labeling

e Span start embedding S
e Span end embedding E

Py = exp(S- pf)'
E j exp(S-p j)
Py, = PE-PI)
Z j exp(E - p j)
(81 & " %, [SERI By .- Py * Training loss
Question Passage
An encoder model (using BERT) for span-based question answering from L -_— log P start; — 108 P end}

reading-comprehension-based question answering tasks.



Paradigms of QA

* Open domain QA
* Knowledge-based QA
* Language Model, e.g., ChatGPT



Knowledge-based QA

* Setup:
* Input:

e Question: where is Golden Gate Park?

* RDF (Resource Description Framework) triples, e.g.,

Subject
Golden Gate Park

* Return:
San Francisco

predicate
location

object
San Francisco

DBpedia
Web site

° N e S
“3,.*, DBDedlammia

& dbpedia.org

DBpedia is a project aiming to extract structured content
from the information created in the Wikipedia project. This
structured information is made available on the World Wide
Web. Wikipedia

Written in: Scala, Java
Programming languages: Java, PHP, Scala

Developer: Leipzig University, Soren Auer, Jens Lehmann,
Georgi Kobilarov, Chris Bizer

Written in: Java, PHP, Scala
Category: Database
Initial release date: January 10, 2007

License: GNU General Public License



Knowledge-based QA

* How do we know which triple can answer the question?
“where is Golden Gate Park?”
* Entity linking
* Link “Golden State park” to relevant triples

* Relation Linking
* Link “where” to a triple with "location” as predicate



Entity Linking

Q : When did shaq come to the nba?

P(“Shaquille 0'Neal”|Q, 'shaq' is a mention)
P('shaq’ is a mention|Q)

Mention classifier + scorer
A

Inner product

o FIELS

— p— m
o~ - P —= s ‘q";oo_o‘-
o R o
AEZ3EEg2 8 NB225EEZT 2
o§°ﬁ° S = O g 4 52822
= S =20 cSEgg™

- O

{=9

IOTOICHENR] A sketch of the inference process in the ELQ algorithm for entity linking in
questions (Li et al., 2020). Each candidate question mention span and candidate entity are
separately encoded, and then scored by the entity/span dot product.

[llustration from https://web.stanford.edu/~jurafsky/slp3/14.pdf
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Relation Linking

* Encode the question via an encoder

m, — BERTCLs([CLS]ql . qn[SEP])

* Trainable vectors {r;} for each relation
* Compute score
s(mg,r;) = mg - Wr,

* Choose the relation with softmax probability



Paradigms of QA

* Open domain QA
* Knowledge-based QA
* Language Model, e.g., ChatGPT



Large Language Model (LLM) for QA

* Trained on huge corpora, LLM’s store knowledge
* Many open API’s

G




Risks and Concerns

* Factuality
e Stochastic Parrot, fluent but false

e Harmfulness
* Question: “How to make a bomb?”

On the Dangers of Stochastic Parrots:
Can Language Models Be Too Big? ‘

Timnit Gebru®
timnit@blackinai.org
Black in Al
Palo Alto, CA, USA

Emily M. Bender*
ebender@uw.edu
University of Washington
Seattle, WA, USA

Angelina McMillan-Major
aymm@uw.edu
University of Washington
Seattle, WA, USA

Shmargaret Shmitchell
shmargaret.shmitchell@gmail.com
The Aether



Agenda

* Applications
* Translation
* Question Answering

* Other Modality
* Speech to text
* Text to Speech
* Vision



Two Tasks

» Automatic Speech Recognition (ASR)

» - |:>[ ASR J I:> It’s time for lunch

e Speech synthesis, or Text-to-Speech (TTS)

It’s time for lunch I::} { TTS J I:>




Word Error Rate (WER) on WSJ eval92

TC-DNN-BLSTM-DNN

tdnn + chain

2
‘ §peechstew 100M
R‘

2015 2016 2017 2018 2019 2020 2021 2022

WORD ERROR RATE (WER)
EAN

Other models -o- Models with lowest Word Error Rate (WER)

Image from https://paperswithcode.com/sota/speech-recognition-on-wsj-eval92
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End-to-end ASR

Y1 Yo Y3 Y4 Y5 Y Y7 Y8 Yo
I t*s time
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w
c
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3
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@

80-dimensional t 4
log Mel spectrum f1 flt

per frame I ——)
Feature Computation

f

o -

1T BIXY Schematic architecture for an encoder-decoder speech recognizer.

[llustration from https://web.stanford.edu/~jurafsky/slp3/16.pdf
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Feature Computation

* Windowing
e Rectangular window
* Gibbs phenomenon
* Hamming window

Rectangular window

decibels

samples

-10
-20
-30
-40
-50
-60
-70
-80
-90

-100
-110
-120
-130

Fourier transform

40

-20

bins

20

40

Window
25 ms

Shift

10 | Window | _--
ms | 25 ms-

| Shift
10
ms

" Window
25 ms

13T (P (W]  Windowing, showing a 25 ms rectangular window with a 10ms stride.

Hamming window (a, = 0.53836) Fourier transform

decibels

samples

[llustration from https://web.stanford.edu/~jurafsky/slp3/16.pdf and https://en.wikipedia.org/wiki/Window function
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https://web.stanford.edu/~jurafsky/slp3/16.pdf
https://en.wikipedia.org/wiki/Window_function

Convert to Frequency domain

* Apply FFT inside each window
* Apply Mel Filter banks

* Why? Human hearing is less sensitive at higher frequency

JRIERICN,

10T UR] The mel filter bank (Davis and Mermelstein, 1980). Each triangular filter,
spaced logarithmically along the mel scale, collects energy from a given frequency range.

[llustration from https://web.stanford.edu/~jurafsky/slp3/16.pdf
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Illustration from https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
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End-to-end ASR

Y1 Yo Y3 Y4 Y5 Y Y7 Yg Yo Ym
I t*s time

Shorter sequence X X¢ ... X,

[ / lSubsampIing J

80-dimensional !

log Mel spectrum f1 ft
per frame L |

Feature Computation

f

TR e

1T BIXY Schematic architecture for an encoder-decoder speech recognizer.

[llustration from https://web.stanford.edu/~jurafsky/slp3/16.pdf
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Subsampling

* Input is very long sequence, e.g.,
e 2s audio is 200 frames, assuming 10ms stride at windowing
* Ways to lower the frame rate:

» Stack adjacent frames
* 1D filter along time axis



End-to-end ASR

(

Y1 Yo Y3 Y4 Y5 Y Y7 Y8 Yo
I t*s time

N

e

80-dimensional t 4
log Mel spectrum f1 ft
per frame L |
Feature Computation

f

TR e

1T BIXY Schematic architecture for an encoder-decoder speech recognizer.

[llustration from https://web.stanford.edu/~jurafsky/slp3/16.pdf
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What are the y’s

\ arXiv

¢ C h dald Cte I's “S https://arxiv.org » cs

End-to-End Speech Recognition in English and Mandarin

by D Amodei - 2015 - Cited by 3375 — We show that an end-to-end deep learning approach can
be used to recognize either English or Mandarin Chinese speech-two vastly different ...

* Words, less common

arXiv

* Subwords, popular now ¥ nussawor eess

[2212.04356] Robust Speech Recognition via Large-Scale ...

by A Radford - 2022 - Cited by 723 — Access Paper: Download a PDF of the paper titled Robust
Speech Recognition via Large-Scale Weak Supervision, by Alec Radford and 5 other authors.



LSTM based Encoder-Decoder

LISTEN, ATTEND AND SPELL: A NEURAL NETWORK FOR
LARGE VOCABULARY CONVERSATIONAL SPEECH RECOGNITION

William Chan

Carnegie Mellon University

Navdeep Jaitly, Quoc Le, Oriol Vinyals

Google Brain

Speller

v ws v {eas)

Listener

) x; Ty E N Ty

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y
characters from h.



Transformer based Encoder-Decoder

40 ms rate

Dropout
40 ms rate 1
Linear
40 ms rate T
Convolution
Subsampling

10 ms rate T

Figure 1: Conformer encoder model architecture. Conformer
comprises of two macaron-like feed-forward layers with half-
step residual connections sandwiching the multi-headed self-
attention and convolution modules. This is followed by a post

layernorm.

10 ms rate '

SpecAug

Conformer: Convolution-augmented Transformer for Speech Recognition

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo

E= s s s S===ct

[ Layemorm }
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Multi-Head Self Attention
Module

. J
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Google Inc.

Wang, Zhengdong Zhang, Yonghui Wu, Ruoming Pang

Table 2: Comparison of Conformer with recent published mod-
els. Our model shows improvements consistently over various
model parameter size constraints. At 10.3M parameters, our
model is 0.7% better on testother when compared to contempo-
rary work, ContextNet(S) [10]. At 30.7M model parameters our
model already significantly outperforms the previous published
state of the art results of Transformer Transducer [7] with 139M

parameters.
Method #Params (M) WER Without LM WER With LM
testclean testother testclean testother
Hybrid
Transformer [33] - - - 2.26 4.85
CTC
QuartzNet [9)] 19 3.90 11.28 2.69 7.25
LAS
Transformer [34] 270 2.89 6.98 2.33 5.17
Transformer [19] - 2.2 5.6 2.6 5.7
LSTM 360 2.6 6.0 22 52
Transducer
Transformer [7] 139 24 5.6 2.0 4.6
ContextNet(S) [10] 10.8 29 7.0 23 5.5
ContextNet(M) [10] 314 24 54 2.0 4.5
ContextNet(L) [10] 112.7 21 4.6 1.9 4.1
Conformer (Ours)
Conformer(S) 10.3 2.7 6.3 2.1 5.0
Conformer(M) 30.7 23 5.0 2.0 43
Conformer(L) 118.8 21 43 1.9 39




Decoding At Inference Time

* Greedy

e Each time step take the most likely token and input to next step

e Beam Search

p(t;| t).t)

* Reca
p Pl 1) ok—1.0—=</s>
AT
(t|start) ';/yesf1.0ﬂ</s>
p(t,|start /
/Ok/.1—></s>
4
"

start—.5—~yes 3—0k—1.0—=</s>
: \</s> z\yes—l.o——</s>

</s>

4 t 4

A search tree for generating the target string T = 11,13, ... from the vocabulary
V = {yes,ok,<s>}, showing the probability of generating each token from that state. Greedy
search would choose yes at the first time step followed by yes, instead of the globally most
probable sequence ok ok.

[llustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf



https://web.stanford.edu/~jurafsky/slp3/10.pdf

Connectionist Temporal Classification (CTC)

Connectionist Temporal Classification: Labelling Unsegmented
Sequence Data with Recurrent Neural Networks

1

Alex Graves ALEX@QIDSIA.CH

Santiago Fernandez' SANTIAGO@IDSIA.CH
Faustino Gomez! TINO@IDSIA.CH
Jiirgen Schmidhuber!-? JUERGEN@IDSIA.CH

! Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Galleria 2, 6928 Manno-Lugano, Switzerland
2 Technische Universitit Miinchen (TUM), Boltzmannstr. 3, 85748 Garching, Munich, Germany

 Drawback of enc-dec architecture
e Causal decoder is slow

 Number of Input speech frames >> Number of output tokens



Connectionist Temporal Classification (CTC)

* Introduce blank token “__.” for silence
e Same token could last for multiple frames

Y(output) |d|i|n|nje]|r
remove blanks |d || i n nie r
merge duplicates |d || 1 |[ u n wnje r "
A (alignment) q ‘i; sjnjnjlujnjefrjrjrjrj.j.

[ A A A

X (input) |X1][X2|[X3 /X4 ]| X5 |[ X6 || X7 ]| X8 || X9 |X10] X11|X12|X13] X14

13T CBOR] The CTC collapsing function B, showing the space blank character _; repeated
(consecutive) characters in an alignment A are removed to form the output Y.

[llustration from https://web.stanford.edu/~jurafsky/slp3/16.pdf



https://web.stanford.edu/~jurafsky/slp3/10.pdf

Connectionist Temporal Classification (CTC)

* Alignment 4 = [a4, ..., ar]

* Independence assumption
.
Perc(AlX) = || p(alX)

=1
* Training loss on (X, Y)

~log ) Pere(AIX)

A:collapse(A)=Y



Training with CTC

* Enumerating all alignments is infeasible

© O ©
c o
O
A o o o [ )
O

T
1 2 3 T-2 T-1 T

Figure 3. illustration of the forward backward algo-
rithm applied to the labelling ‘CAT’. Black circles
represent labels, and white circles represent blanks. Arrows
signify allowed transitions. Forward variables are updated
in the direction of the arrows, and backward variables are
updated against them.

Illustration from Graves et. al, 2006



https://www.cs.toronto.edu/~graves/icml_2006.pdf

Decoding with CTC

output letter Y1 Yo Y3 y4 y5 wee Yn
sequence Y i i i
Classifier . .
+softmax ) (s
ENCODER
Shorter input ' t '
sequence X X1 Xn
| |
s Subsampling .
A 4
log Mel spectrum fy fi
Feature Computation
W

137N CBUWL]  Inference with CTC: using an encoder-only model, with decoding done by
simple softmaxes over the hidden state A, at each output step.

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf



https://web.stanford.edu/~jurafsky/slp3/10.pdf

Other decoding issues

* Beam search can be applied
* Use a lexicon Trie to avoid obvious spelling errors



Discussion

* What are the key differences between CTC loss and enc-dec model?



Use Language Model

* “two” and “to” sounds alike
* How to make sure we decode the right one?
e Use Language Model

e Easy way: rescoring N-best list
* Hard way: add LM score at decoding

* We can finetune the language model for ASR

Large Margin Neural Language Model

Jiaji Huang' Yi Li' Wei Ping! Liang Huang'%*

! Baidu Research, Sunnyvale, CA, USA
2 School of EECS, Oregon State University, Corvallis, OR, USA



Evaluation Metric: Word Error Rate

 Edit (Levenshtein) distance between reference and decoded

Word Error Rate — 100 x Insertions + Substitutions + Deletions

Total Words in Correct Transcript

* Implementation based on Dynamic programming

H]YJU[N]DJ]A] I (0 i=7=0
0| 1| 2|3 |4 ]|5]|6/|7 i ,j=0andz >0
2 3 : ] .

. 0 [t 2 | 3| 4) > 6 o 7 ,i=0and j>0
OV 1 12| 3] 4|5 6 levas(z,7) = 4 ,_ 3 '
N |3 2|2 |2]2]3]| 4] 5 levap(z —1,7) +1
Dl 4| 3] 3313213 2 min | lev, (7,7 — 1) + 1 , else
A LS| 4| 4] 4|4 3] 2|98 \ levap(z — 1,7 — 1) + [a; # bj]

Example from https://www.cuelogic.com/blog/the-levenshtein-algorithm



https://www.cuelogic.com/blog/the-levenshtein-algorithm

Agenda

* Applications
* Translation
* Question Answering

* Other Modality
* Speech to text
* Text to Speech
* Vision



Text to Speech

Mel Spectrogram Vég\r/]f;);?
Vocoder
( 5 Conv Layer WaveNet
* Two steps: Post Net Mol
e Text to mel spectrum Decoder <
. v Li.nea.r
* mel spectrum to audio (2} 2w
L Pre-Net Layers Linear Sto0 ok
Projection LOPILOKEN
Location
Sensitive
Attention
Encoder

Inout Text Character 3 Conv Bidirectional
P Embedding Layers LSTM
IDTICMINE] The Tacotron2 architecture: An encoder-decoder maps from graphemes to

mel spectrograms, followed by a vocoder that maps to wavefiles. Figure modified from Shen
et al. (2018).

Illustration from https://web.stanford.edu/~jurafsky/slp3/16.pdf



https://web.stanford.edu/~jurafsky/slp3/16.pdf

Vocoder

* Input: mel spectrogram
e OQutput: 8-bit mu-law audio samples

9.9 9 .9 9 099 9. 9999 .9.9,9 o

e e e J} Dilation = 8
00000600 ‘ 0 0,9 e

— J} Dilation = 4
O

‘ : ‘ Hidden Layer
] Dilation = 2
O O O O , O Hidden Layer
l ) : Dilation = 1
Input

13T MIWE] Dilated convolutions, showing one dilation cycle size of 4, i.e., dilation values
of 1, 2, 4, 8. Figure from van den Oord et al. (2016).

Illustration from https://web.stanford.edu/~jurafsky/slp3/16.pdf



https://web.stanford.edu/~jurafsky/slp3/16.pdf

Agenda

* Applications
* Translation
* Question Answering

* Other Modality
* Speech to text
* Text to Speech
* Vision



Joint modeling of Text and Images

VILBERT: Pretraining Task-Agnostic Visiolinguistic
= Representations for Vision-and-Language Tasks

g

ViLBERT

Jiasen Lu!, Dhruv Batra':2, Devi Parikh!:2, Stefan Lee'3
1Georgia Institute of Technology, 2Facebook AI Research, 3Oregon State University

1

~ !—'1!3‘3- Man shopping > o Aligned / Not Aligned
hvo hvl hvz hv3 pee hw- hw0 hw1 hwz hw3 A8 hwr ,—ﬂ hv1 hvz hv3 i th hwo hw1 hwz hw3 e th
Vision & Language BERT Vision & Language BERT

F By ¥ i} P b Fi. N
<IMG> | | <MASK> 4 <CLS> | |<mask> <MASK> for | e |<SEP>| |<IMG> J’. & ! |<cLs> || Man ||shopping|| for | e+ [<SEP>
\ / S \ / \ \ 7 N /)& CE

(a) Masked multi-modal learning

=

N 4

(b) Multi-modal alignment prediction

Figure 3: We train VILBERT on the Conceptual Captions [24] dataset under two training tasks to
learn visual grounding. In masked multi-modal learning, the model must reconstruct image region

categories or words for masked inputs given the observed inputs. In multi-modal alignment prediction,
the model must predict whether or not the caption describes the image content.



Co-attention

>
.

l+1 [+1
I-I(1 ) H‘(,l ),

->[ Add & Norm

‘H‘g-}-l)

-

[ Feed Forward ]

7
—{ Add & Norm |

Multi-Head Multi-Head

[ I\:ulti-l-!ead ] Attention Attention
. ‘ J . J
\ J \ Visual ) U Linguistic )
HO HP[f============= == |HY
(a) Standard encoder transformer block (b) Our co-attention transformer layer

Figure 2: We introduce a novel co-attention mechanism based on the transformer architecture. By
exchanging key-value pairs in multi-headed attention, this structure enables vision-attended language
features to be incorporated into visual representations (and vice versa).



On Perplexity



Perplexity

* N classes, predicted probabilities {p;}),
« Groundtruth probabilities {p; }i-,

e Cross entropy loss £ = — Y., p; Inp;

e Perplexity e?

* Perplexity = 1as¥ =0

* Higher perplexity, less accurate the model



Questions

* In a 3-way classification problem
 What would be the perplexity of worst classifier?

 If we know the 3" class occurs twice more often the the 15t and 2n¢
class

e Can we build a classifier that reduces the perplexity, without any
training data?



