CS6120: Lecture 5

Jiaji Huang
https://jiaji-huang.github.io

Recap of Previous Lectures

documents

Feature extraction

>

0.5

1.8

Representations

1.9

2.2

O 5
2.0l

classifier

~

J

Recap of Previous Lectures

* Features
* Bag of words
 TF-IDF
* Word2vec, PMI

* Classifiers
* Naive Bayesian
* Logistic regression
* Softmax classifier

Recap of Previous Lectures

* Review skip gram: a 2-layer network
* e.g., receive a training sample (x=the, y=quick)

) the the the //\\ - P(y=the)
fox fox ! \ —> P(y=fox)

= N e

quick quick :

Maximize it

No order information!

w C

e’1 esn
Look-up embedding layer Linear layer softmax(sy,..,S,) = (-) o)
i=15i i=15i

Modern architecture: Order Information

e.g., BERT (masked language modeling)

EE) the

Em) fox

quick

mm=) brown

mmm) [mask]

The [mask] brown fox [mask]

Nonlinear layers

Look-up embedding layer

the //\\ > P(y=the)
fox — P(y=fox)

A

quick >

Maximize it

Linear layer softmax

Recap of Previous Lectures

e Attention
e Visualization
* fine-tuning

 benchmarks

Agenda for Today

* Deep dive of “Nonlinear layers”
* Recurrent Neural Network (RNN)
* Architectures
* Transformer

* Transformer Language Models
* Representations in Transformer

RNN

Yt)

|/

* Hidden state h; h)

(\
(—
* Input x, ﬂ e \

*hy = g(Uhe—q + Wxy) g) (D)

lgure A lmp e recurrent neural network i1llustrated as a feedforward network.
Vh Fi '] Simpl 1 k i1l d feedf d k
® —
YVt f (t)

* e.g., g(+) as tanh, f(-) as softmax

1.0

0.5

0.0

—0.51

—1.01
-50 =25 0.0 2.5 5.0

[llustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

RNN

* “Unroll” along time axis

-
>

A simple recurrent neural network shown unrolled in time. Network layers are recalculated for
each time step, while the weights U, V and W are shared across all time steps.

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Stacked RNN layers

hi = g(U*h{_{ + Wlx,)
hi = g(U?hi_, + W2h})

h? = g(U3h;_, + W3h?)

Stacked RNN layers

s ™
> - RNN 3
_] J
e ™
. : RNN 2 -
_ 4 L J
z : : RNN 1 :)
i T
X4 Xo X Xn

OB ML) Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

RNN for (Causal) language Modeling

* Predict next word given previous ones

Next word long and thanks for all
3 v v \ 1T
Loss |_ 10% ylongl l_ lo ya.ndl |_ 10g Ythanks | |— log Yfor | |— log Yall | T Z Lok
1 f=1
y

oo (o) (o) (o) (o) (o)

Vocabulary Vh
h
RNN
lr 3
Input e
Embeddings
So long and thanks for

| JT01 R AY Training RNNs as language models.

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

RNN for Text Generation

* Generate the next word given previous ones

T ‘\l ‘\l - —\I
sampledWord S0 | long | and | ?
| | |
| | |
sofmax (i) | () ! Gl
i | i | 3 | 3
| | |
| | | w
| | I
[RNN T ,
4 ' 4 ' o ' 4 J
| ! |
Embedding : : :
| | |
| ! |
Input Word <&> | ’SO : Ipng : 5:1nd
| // | // | //
7 \7 N

1O AY] Autoregressive generation with an RNN-based neural language model.

[llustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Bi-directional RNN

* Input x{, X5, ..., X1

. h{ = RNNf(xl,xz, ey Xt)

e h? = RNN, (x7, Xp—_1, ... X¢)
* hy = [h{' h]

Bi-directional RNN

concatenated
outputs

] RNN 2

B RNN 1 i
R

TR MY A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Why bi-directional

* Some applications allow us to see the entire sequence, e.g.,
» Text Classification
* Speech Recognition

* Bi-directional often beats uni-directional:
e e.g., a speech recognition example (lower WER is better)

WSJ | HKUST LibriSpeech
dev dev test test
clean other clean other

“Google”-BLSTM 79 4.7|1299 289| 47 14.1 49 152
“Google”-LSTM 99 6.5(355 338| 63 182 65 194

Encoder Architecture |dev test| dev test

ASR results from https://www.jonathanleroux.org/pdf/Moritz2019Interspeech09.pdf

https://www.jonathanleroux.org/pdf/Moritz2019Interspeech09.pdf

LSTM, but why?

* RNNs can be hard to train
* Gradient explosion and vanishing problem

N arXiv
7’ .
https://arxiv.org>cs ¢

On the difficulty of training Recurrent Neural Networks

by R Pascanu - 2012 - Cited by 6493 — We propose a gradient norm clipping strategy to deal with
exploding gradients and a soft constraint for the vanishing gradients problem. We ...

* In modern words, attention span is very short!

LSTM

* Forget gate

* Add gate

e Combined

* Output gate

fe = 0(Urhi_q + Wexy)
ke =cio1 O fe

i = o(Uihy—q + Wix;)

ge = tanh(Ujhi_q + Wyx;)
Je = 9t Ol

¢t =Jji + ke

0r = 0(Upht—q + Wyxt)
h; = o, © tanh(c¢;)

/
/ !
I e a
-2

sigmoid

LSTM

=

(e)

i =

C

10T R BRI A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the
current input, x, the previous hidden state, h,_;, and the previous context, ¢,_;. The outputs are a new hidden
state, h, and an updated context, c;.

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

\ arXiv
G R U g https://arxiv.org » cs

Empirical Evaluation of Gated Recurrent Neural Networks ...

by J Chung - 2014 - Cited by 13908 — In this paper we compare different types of recurrent
units in recurrent neural networks (RNNs). Especially, we focus on more sophisticated ...

e A Variant of LSTM

* Fewer gates, less parameters

Agenda for Today

* Deep dive of “Nonlinear layers”
* Recurrent Neural Network (RNN)
* Architectures
* Transformer

* Transformer Language Models
* Representations in Transformer

Typical Architectures

y
Y1 Y2 Yn ﬁf7
t t t S
(RNN) (RNN > Note: all RNNs can be replaced by LSTMs!
t t t t t ¢
X4 Xo Xn X4 Xp Xn
a) sequence labeling b) sequence classification
y1 y2 e ym
i t
Xy X % (' DecoderRNN)
- ’
(RNN >
(' EncoderRNN)
o) i ot ;
| X2 = -1 Xy Xp . X,
¢) language modeling d) encoder-decoder
Four architectures for NLP tasks. In sequence labeling (POS or named entity tagging) we map

each input token x; to an output token y;. In sequence classification we map the entire input sequence to a single
class. In language modeling we output the next token conditioned on previous tokens. In the encoder model we
have two separate RNN models, one of which maps from an input sequence X to an intermediate representation
we call the context, and a second of which maps from the context to an output sequence y.

[llustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Enc-Dec with RNNs

* Applications: translation, summarization, dialog, ...

Decoder
A
7N ~ Y
Yy ! Y2 | Y | y4 | </s>
(output is ignored during encoding) p A : | A ! : 4
softmax (u.ﬂu) : (n-lll-) : () : (n-lﬂ-) |
t) Lo | e
o, | B —E— ot
layer(s) N 0 o el ¢ ey vl
embedding ; i ; :
layer : Q ! - Q : ‘
I | 1 I
x Xz X3 Xn - . Py i /,yz L E Pl
¥ _4/ L/ 1557 7 \//
S sk
Encoder

1P At] A more formal version of translating a sentence at inference time in the basic RNN-based
encoder-decoder architecture. The final hidden state of the encoder RNN, Ay, serves as the context for the
decoder in its role as hg in the decoder RNN.

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Attention in Enc-Dec Architecture

* Drawback of using a single context vector

Encoder bottleneck Decoder

- A 'y
- =.
' \
’

‘. S - -
’ o~
\ Al -
S - ’ \\i‘\ -

-

~a

QTN B WAL Requiring the context ¢ to be only the encoder’s final hidden state forces all the
information from the entire source sentence to pass through this representational bottleneck.

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Attention in Enc-Dec Architecture

Decoder

. - |
i e e . |
attention ,"\r,----/*’,’f-\ ,-\r,.»-----' ""‘f :
weights) 3 37 s - d@ ' @D
Qij ! }d—“‘_};J"":::t'-':::jf—‘_-—___’_‘_-_--._J;f'_“'-—_.____ Iy : r
i Yi-1° 1y | B e D e et e e T I
T Esaag | 2o
layer(s) T T T T \ A ! /‘T
|
C. |
i
x1 X2 XS Xn | |
N— - sl ¥ | A
| /,
Encoder s

QTR WR] A sketch of the encoder-decoder network with attention, focusing on the computation of ¢;. The
context value ¢; is one of the inputs to the computation of h:.’ . It is computed by taking the weighted sum of all

the encoder hidden states, each weighted by their dot product with the prior decoder hidden state hf.i_l.

— nd e

[llustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Agenda for Today

* Deep dive of “Nonlinear layers”
* Recurrent Neural Network (RNN)
* Architectures
* Transformer

* Transformer Language Models
* Representations in Transformer

More Parallelizable than RNN

Self-Attention
Layer

Information flow in a causal (or masked) self-attention model. In processing
each element of the sequence, the model attends to all the inputs up to, and including, the
current one. Unlike RNNs, the computations at each time step are independent of all the
other steps and therefore can be performed in parallel.

[llustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

A Transformer Block

Y

/- . S
Transformer (Layer Normalize)
Block %>
Residual
connection [Feedforward Layer]
3
(Layer Normalize]
-
Residual
connection Self-Attention Layer]]

8 &

I3 CBURY A transformer block showing all the layers.

[llustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Math of Self-attention

 Map hidden states to keys, queries and values
q; = qui' ki = kai, Vi = vai
* Raw score
s =q; - kj/Vd

e Attention weights
e’iJ

ai,j — Zl eSi,l

Yi = z Qi ;jVj

J

e OQutput Hidden states

Attention Mask

. _ el =y
@ij = ¥, el Yi = 4%V

* The range of j (or [) for causal language model: j < i

q1°k1 —00 | —00 | —00 | —00

q2+k1|g2*k2| —c0 | —o0 | —o0

N |g3+k1|q3:k2|q3+k3| —c0 | —oo

g4+k1|q4+-k2|q4+k3 |g4-k4| —oo

q5+k1|g5+k2 [q5°k3 | g5+k4 | q5k5

N

QT PJUK] The N x N QKT matrix showing the g; - k; values, with the upper-triangle
portion of the comparisons matrix zeroed out (set to —eo, which the softmax will turn to
Zero).

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Multi-head Attention

* Multiple sets of W9, W*and WV | : \
roject down to 0
e concatenate output from each head | | """ W
Concatenate [head I 5 I — 1' —]
I 1 Outputs : : \
* Project with W° ;
[W, Wi, WY, Head 4 J
Multihead = ——
Attention (o2 wes W // Head3]
Layer X a2 |
(wQ, wK wY, Head1
- AN /4)
X
@ T ®)

1 CBUE] Multihead self-attention: Each of the multihead self-attention layers is provided with its own
set of key, query and value weight matrices. The outputs from each of the layers are concatenated and then
projected down to d, thus producing an output of the same size as the input so layers can be stacked.

[llustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Residual Connection

/Transformer (Layer Normalize) R
Block %; x HFF(x)
Residual
l connectionl [Feedforward Layer]
(Layer Normalize)
><+> x + self Attn(x)

| Self-Attention Layer |

Residual
connection
A /

O 868 - 6)

13T MUY A transformer block showing all the layers.

[llustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Why Residual Connection

* Consider a system with residual connection
y = Ax(0) + x(0)

* We use gradient descent to train
Y _arnZ
a0~ AT D5

* A + I is better “conditioned” than A
* Called diagonal loading sometimes

arXiv
https://arxiv.org » stat

La ye I N orma | | Zat | on [1607.06450] Layer Normalization

by JL Ba - 2016 - Cited by 9138 — Layer normalization is very effective at stabilizing the
hidden state dynamics in recurrent networks. Empirically, we show that layer ...

b 1 G
A
H = — in
/Transformer (Layer Normalize)) dp i—1
Block {9 y
Residu.al [= S] 1 h ,
connection ee Orwf yer o = d_ Z(x,' — ﬂ)
h =1
[[Layer Normalize)
,/% g — (x—u)
Residual o (o)
connection [Self-Attention Layer]
g) J
(B . & > LayerNorm = yX+ 3

13T MUY A transformer block showing all the layers.

[llustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Feedforward Layer

?

/- . S
Transformer (Layer Normalize)
Block ={,> y =W,o(W;x)
Residual :
connection [[Feedforward Layer
(Layer Normalize]
-+
Residual
connection [Self-Attention Layer }

- : J

O 86 - &)

IO GRS A transformer block showing all the layers.

[llustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Brief Summary

 What are the parameters to be trained?

* Which part has most parameters?

[llustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

/- . N
Transformer (Layer Normalize)
Block {+>
Residual
connection [Feedforward Layer J
A
(Layer Normalize)
3
Residual :
connection | Self-Attention Layer }
- 1 J

O e - &)

13TV (XY A transformer block showing all the layers.

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Word Order Information

* Encode following two sentences
“Itis good, isn't it ?” wv.s. “itisn’t good, is it ?”
* Take the hidden state at last time step as sentence embedding
* The embeddings are the same!
* How to break the symmetry?

Positional Encoding

Transformer
Blocks

Composite
Embeddings
(input + position)

Word
Embeddings

Position
Embeddings

Janet will back the bill

134 BUIXY A simple way to model position: simply adding an embedding representation
of the absolute position to the input word embedding to produce a new embedding of the same
dimenionality.

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Absolute Position Encoding

* Each position with a encoding vector
* E.g, sinusoidal

p; = [Sin w1l,COS W1 L, ...,SINWq /2L, COSWq /2 i]

, Neural Information Processing Systems
' https://papers.neurips.cc » paper » 7181-attentio... 3

Attention is All you Need

by A Vaswani - Cited by 92585 — We propose a new simple network architecture, the

Transformer, based solely on attention mechanisms, dispensing with recurrence and...
11 pages

* Why it hel
y it helps 12

DiDj = z cos ws(i — j)

s=1

Relative Position Encoding

* Some function of i —j
e E.g., ALiBi’s raw score

. Cli‘kj
Si,j = \/.C_l

—cli—jl,c>0

\ arXiv
https://arxiv.org » pdf

Attention with Linear Biases Enables Input Length ...

by O Press - 2021 - Cited by 150 — When using ALiBIi, we do not add positional embeddings at
the bottom of the network. ... CAPE: encoding relative positions with continuous ...

* Encourage to pay more attention to nearby tokens

RoOPE: Another Relative Position Encoding

\ arXiv
https://arxiv.org > pdf 3

enhanced transformer with rotary position embedding

by J Su - 2021 - Cited by 303 — In this paper, we first investigate various methods to integrate
positional information into the learning process of transformer-based language ...

* Rotate q; by iX8, k; by j X6
* So if |i — j| big, their inner product is small

Agenda for Today

* Deep dive of “Nonlinear layers”
* Recurrent Neural Network (RNN)
* Architectures
* Transformer

* Transformer Language Models
* Representations in Transformer

Masked Language Model

long thanks the

CE Loss —10g Yiong] [=Tog ythanks] [— 108 Ythe) .
* Sees left and right contexts

Soft '
Vocabulary (ol) l o l (ol l * no attention mask
Wy & Wy Wy

Bidirectional Transformer Encoder
Token + .,.é
Positional

R LR

So [mask] and [mask] for all apricot fish
So long and thanks for all the fish

13T B IRY Masked language model training. In this example, three of the input tokens are selected, two of
which are masked and the third is replaced with an unrelated word. The probabilities assigned by the model

to these three items are used as the training loss. (In this and subsequent figures we display the input as words
rather than subword tokens; the reader should keep in mind that BERT and similar models actually use subword

tokens instead.)

[llustration from https://web.stanford.edu/~jurafsky/slp3/11.pdf

https://web.stanford.edu/~jurafsky/slp3/11.pdf

Masked Language Model

* Aka encoder model
e E.g. BERT
* Application: language understanding tasks

Causal Language Model

Next word Iong and

thanks for all

) \ \
Loss |_ log Ylong | I_ IOg yandl |" log Ythanks | I_ Iog Yfor l '— lo
3 3 A A A

Yall |

Softmax over
Vocabulary

==

Linear Layer

>
>

Transformer !
Block :

Input
Embeddings

So long and

thanks for

t=1

100 B UNE Training a transformer as a language model.

[llustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Causal Language Model

* Aka decoder model
* E.g., GPT-x, Llama
* Applications: language generation tasks

Language Generation

* How to sample the most probable path from softmax probabilities?
* Greedy

* Beam search B

Pl ty) ok—1.0——</s>

e _.yes—1.0—=</s>

p(t,|start) % 2

/,Ok d1—</s>
4
start—.5—~yes 3—0k—1.0—=</s>
~ ; y —— :
¥ . z\yes—l.o—-</s>

</[s>

t t, t,

A search tree for generating the target string T = t,1»,... from the vocabulary
V = {yes, ok, <s>}, showing the probability of generating each token from that state. Greedy
search would choose yes at the first time step followed by yes, instead of the globally most
probable sequence ok ok.

[llustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Language Generation

* Most probable path is too deterministic
* Top-K sampling
* Nucleus sampling

Agenda for Today

* Deep dive of “Nonlinear layers”
* Recurrent Neural Network (RNN)
* Architectures
* Transformer

* Transformer Language Models
* Representations in Transformer

X arXiv
https://arxiv.org> cs 3

How Contextual are Contextualized Word Representations ...

by K Ethayarajh - 2019 - Cited by 659 — Title:How Contextual are Contextualized Word
Representations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings.

Average Cosine Similarity between Randomly Sampled Words

1.0

® ELMo
©® BERT
4 @ +*
0.8 GPT2 v
-0 " . Y
e’ L. LY TV D I S Y SPTY LY. e
0.6) S R FTTEYTY TETLLL [EENTEY ke \ .
L © ® ke
-“.‘-
N T SR T L
4 1 1 1 1] _Lssty "easa @ cenes .
0.4 I °
Y o
AR i
0.2 F Yl >
PO LA et o)
0.0 ® '
0 1 2 3 - 5 6 7 8 9 10 11
Layer Index

* The representations occupy a small cone

Similarity between Attention Heads

- S CcoS corr CC
4 S ne 5 2
sy 2 b T ST |
o 6 1 H [
3 il fiH
- 8 5 758 i 14
9 o I R | !
10 | L 11 f ! i ! T 1 i
11 : oo e e S [B S BIRTE T TR e
12 ; e HED G mEE o B) B i gatE o |
123456789101112 123456 789101112 1234567 89101112 1234567 89101112 123456 789101112 123456 789101112 123456 7 8 9101112
Layer Layer Layer Layer Layer Layer Layer

* Consecutive layers are similar
 Some heads are similar
* Motivates pruning of attention heads

Image from https://aclanthology.org/2021.naacl-main.72.pdf

1.0

0.8

0.6

0.4

0.2

https://aclanthology.org/2021.naacl-main.72.pdf

Similarities between Published Models

r1.0

xInet-base 1
xInet-large
xlm-mIim-ende
xlm-mim-enro
xIm-clm-ende
xIm-mlIm-enfr
roberta-large-mnli
gpt

gpt2-large
longformer-base
roberta-base
bart-base
bart-large
bart-large-cnn
xIlm-roberta-large
xIm-roberta-base

roberta-large

1
fe——
=
J
]
———— ¥
XIm-mim-100
xIm-mim-17 —
—
e

albert-large
albert-base
distilbert-base-multilingual
t5-small
t5-base
t5-large
£t5-3b

bert-large-case
bert-base-cased
distilbert-base-cased
distilbert-base-uncased
bert-base-uncased

| bert-large-uncased o : o . i . i :
00O VE=HE0VVVVCVVVONV V=V VQTTOTTTO
¢ mWEUECQmmmm@cmmmHmmgrUMOmww(ucucucu 0.00 0.25 0.50 0.75 1.00 1.25 150 1.75 2.00
S R S S Sl
1
Din bt VD T ga U Lt ESTLE N TR 000000
= = = LA e e o
‘L‘GJE—EFE‘ w g o obs 5“6:59““ VOV555
CceEoEg QEgAR® o onn T Ty
(T<_E| s O\LQ)-QD—I(UGJG) [E_QSD SO0
X Tecer To8 po8ar—gog TOoQnno
EE_:S =0 EOEO—X{U - OV X 1=
=xxXxL = arri=Xx (0] LT oQ®
) QUL
3 o EE @ L83eee
2 XX Q S9%0
+ 0200
g %
= °
0
©

Image from https://proceedings.neurips.cc/paper_files/paper/2021/file/alc3ae6c49a89d92aef2d423dadb477f-Paper.pdf

https://proceedings.neurips.cc/paper_files/paper/2021/file/a1c3ae6c49a89d92aef2d423dadb477f-Paper.pdf

Bilingual Lexicon Induction Revisited

* Source embedding X € R™*4, target embedding Y € R™*¢
* Learn a rotation matrix R € R%*4 RRT =]

* Procrustes problem

min ||XR — Y||?
R:RRT=]

* We can show it’s equivalent to solving

max (R,Y'X)
R:RRT=]

* Letthe SVD of YTX = UAVT, then optimum R* = UVT

