
CS6120: Lecture 5
Jiaji Huang

https://jiaji-huang.github.io



Recap of Previous Lectures

Feature extraction

documents

0.5
1.8
⋮

-1.2
2.2
⋮

2.5
-2.0
⋮

Representations

classifier

👍

👎



Recap of Previous Lectures

• Features
• Bag of words
• TF-IDF
• Word2vec, PMI

• Classifiers
• Naïve Bayesian
• Logistic regression
• Softmax classifier



Recap of Previous Lectures

• Review skip gram: a 2-layer network
• e.g., receive a training sample (x=the, y=quick)

the

⋮

fox

quick

Look-up embedding layer

the

⋮

fox

quick

the

Linear layer softmax

P(y=quick)

Maximize it

P(y=fox)
P(y=the)

𝑠!, . . , 𝑠" =
𝑒#!

∑$%!" 𝑠$
, … ,

𝑒#"
∑$%!" 𝑠$

𝑊 𝐶

No order information!



Modern architecture: Order Information

the

⋮

fox

quick

the

⋮

fox

quick

Linear layer softmax

P(y=quick)

Maximize it

P(y=fox)
P(y=the)

Look-up embedding layer

brown

The [mask] brown fox

Nonlinear layers

[mask] 

[mask]

e.g., BERT (masked language modeling)



Recap of Previous Lectures

• Attention
• Visualization
• fine-tuning
• benchmarks



Agenda for Today

• Deep dive of “Nonlinear layers”
• Recurrent Neural Network (RNN)
• Architectures
• Transformer

• Transformer Language Models
• Representations in Transformer



RNN

• Hidden state ℎ!
• Input 𝑥!
• ℎ! = 𝑔(𝑈ℎ!"# +𝑊𝑥!)
• 𝑦! = 𝑓(𝑉ℎ!)
• e.g., 𝑔(-) as tanh, 𝑓 -  as softmax

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


RNN

• “Unroll” along time axis

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Stacked RNN layers

ℎ!# = 𝑔(𝑈#ℎ!"## +𝑊#𝑥!)

ℎ!$ = 𝑔(𝑈$ℎ!"#$ +𝑊$ℎ!#)

ℎ!% = 𝑔(𝑈%ℎ!"#% +𝑊%ℎ!$)

⋮



Stacked RNN layers

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


RNN for (Causal) language Modeling

• Predict next word given previous ones

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


RNN for Text Generation

• Generate the next word given previous ones

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Bi-directional RNN

• Input 𝑥#, 𝑥$, … , 𝑥&
• ℎ!

' = 𝑅𝑁𝑁'(𝑥#, 𝑥$, … , 𝑥!)
• ℎ!( = 𝑅𝑁𝑁((𝑥& , 𝑥&"#, … 𝑥!)
• ℎ! = [ℎ!

' , ℎ!(]



Bi-directional RNN

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Why bi-directional

• Some applications allow us to see the entire sequence, e.g.,
• Text Classification
• Speech Recognition

• Bi-directional often beats uni-directional:
• e.g., a speech recognition example (lower WER is better)

ASR results from https://www.jonathanleroux.org/pdf/Moritz2019Interspeech09.pdf

https://www.jonathanleroux.org/pdf/Moritz2019Interspeech09.pdf


LSTM, but why?

• RNNs can be hard to train
• Gradient explosion and vanishing problem

• In modern words, attention span is very short!



LSTM

• Forget gate
𝑓! = 𝜎(𝑈'ℎ!"# +𝑊'𝑥!)

𝑘! = 𝑐!"#⊙𝑓!
• Add gate

	𝑖! 	= 𝜎 𝑈)ℎ!"# +𝑊)𝑥!
𝑔! = tanh(𝑈*ℎ!"# +𝑊*𝑥!)
𝑗! =	𝑔! ⊙ 𝑖!

• Combined                 𝑐! = 𝑗! + 𝑘!
• Output gate

𝑜! = 𝜎(𝑈+ℎ!"# +𝑊+𝑥!)
ℎ! = 𝑜! ⊙ tanh(𝑐!)

sigmoid



LSTM

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


GRU

• A Variant of LSTM
• Fewer gates, less parameters



Agenda for Today

• Deep dive of “Nonlinear layers”
• Recurrent Neural Network (RNN)
• Architectures
• Transformer

• Transformer Language Models
• Representations in Transformer



Typical Architectures

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

Note: all RNNs can be replaced by LSTMs!

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Enc-Dec with RNNs

• Applications: translation, summarization, dialog, …

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Attention in Enc-Dec Architecture

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

• Drawback of using a single context vector 

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Attention in Enc-Dec Architecture

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

𝛼$& = ℎ$' - ℎ&(

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Agenda for Today

• Deep dive of “Nonlinear layers”
• Recurrent Neural Network (RNN)
• Architectures
• Transformer

• Transformer Language Models
• Representations in Transformer



More Parallelizable than RNN 

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


A Transformer Block

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Math of Self-attention

• Map hidden states to keys, queries and values
𝑞! = 𝑊"𝑥! , 𝑘! = 𝑊#𝑥! , 𝑣! = 𝑊$𝑥!

• Raw score
𝑠!,& = 𝑞! ) 𝑘&/ 𝑑

• Attention weights

𝛼!,& =
𝑒'!,#
∑( 𝑒'!,$

	

• Output Hidden states

𝑦! =1
&

𝛼!,&𝑣&



Attention Mask

• 𝛼),- =
.!",$

∑% .
!",%	, 𝑦) = ∑- 𝛼),-𝑣-

• The range of 𝑗 (or 𝑙) for causal language model: 𝑗 ≤ 𝑖

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Multi-head Attention

• Multiple sets of 𝑊0, 𝑊1and 𝑊2

• concatenate output from each head
• Project with 𝑊+

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Residual Connection

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

𝑥 + 𝑠𝑒𝑙𝑓𝐴𝑡𝑡𝑛 𝑥

𝑥 + 𝐹𝐹 𝑥

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Why Residual Connection

• Consider a system with residual connection
𝑦 = 𝐴𝑥 𝜃 + 𝑥(𝜃)

• We use gradient descent to train 𝜃
𝜕𝑦
𝜕𝜃

= (𝐴 + 𝐼)
𝜕𝑥
𝜕𝜃

• 𝐴 + 𝐼 is better “conditioned” than 𝐴
• Called diagonal loading sometimes



Layer Normalization

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf


Feedforward Layer

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

𝑦 = 𝑊)𝜎(𝑊!𝑥)

https://web.stanford.edu/~jurafsky/slp3/10.pdf


Brief Summary

• What are the parameters to be trained?
• Which part has most parameters?

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf


Word Order Information

• Encode following two sentences
 “It is good, isn’t it ?”  v.s. “it isn’t good, is it ?”
• Take the hidden state at last time step as sentence embedding
• The embeddings are the same!
• How to break the symmetry?



Positional Encoding

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf


Absolute Position Encoding

• Each position with a encoding vector
• E.g, sinusoidal

𝑝⃑) = sin𝜔#𝑖 , cos𝜔# 𝑖, … , sin𝜔3/$𝑖, cos𝜔3/$ 𝑖

• Why it helps

𝑝⃑) - 𝑝⃑- =Q
56#

3/$

cos𝜔5(𝑖 − 𝑗)



Relative Position Encoding

• Some function of 𝑖 − 𝑗
• E.g., ALiBi’s raw score

𝑠),- =
𝑞) - 𝑘-
𝑑

− 𝑐 𝑖 − 𝑗 , 𝑐 > 0

• Encourage to pay more attention to nearby tokens



RoPE: Another Relative Position Encoding

• Rotate 𝑞)  by 𝑖×𝜃, 𝑘-  by 𝑗×𝜃
• So if 𝑖 − 𝑗  big, their inner product is small



Agenda for Today

• Deep dive of “Nonlinear layers”
• Recurrent Neural Network (RNN)
• Architectures
• Transformer

• Transformer Language Models
• Representations in Transformer



Masked Language Model

Illustration from https://web.stanford.edu/~jurafsky/slp3/11.pdf

• Sees left and right contexts
• no attention mask

https://web.stanford.edu/~jurafsky/slp3/11.pdf


Masked Language Model

• Aka encoder model
• E.g. BERT
• Application: language understanding tasks



Causal Language Model

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf


Causal Language Model

• Aka decoder model
• E.g., GPT-x, Llama
• Applications: language generation tasks



Language Generation

• How to sample the most probable path from softmax probabilities?
• Greedy
• Beam search

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf


Language Generation

• Most probable path is too deterministic
• Top-K sampling
• Nucleus sampling



Agenda for Today

• Deep dive of “Nonlinear layers”
• Recurrent Neural Network (RNN)
• Architectures
• Transformer

• Transformer Language Models
• Representations in Transformer



• The representations occupy a small cone



Similarity between Attention Heads

Image from https://aclanthology.org/2021.naacl-main.72.pdf

• Consecutive layers are similar
• Some heads are similar
• Motivates pruning of attention heads

https://aclanthology.org/2021.naacl-main.72.pdf


Similarities between Published Models

Image from https://proceedings.neurips.cc/paper_files/paper/2021/file/a1c3ae6c49a89d92aef2d423dadb477f-Paper.pdf

https://proceedings.neurips.cc/paper_files/paper/2021/file/a1c3ae6c49a89d92aef2d423dadb477f-Paper.pdf


Bilingual Lexicon Induction Revisited

• Source embedding 𝑋 ∈ ℝ7×3 , target embedding Y ∈ ℝ7×3

• Learn a rotation matrix 𝑅 ∈ ℝ3×3 , 𝑅𝑅& = 𝐼
• Procrustes problem

min
9:99&6;

𝑋𝑅 − 𝑌 $

• We can show it’s equivalent to solving
max

9:99&6;
𝑅, 𝑌&𝑋

• Let the SVD of 𝑌&𝑋 = 𝑈Λ𝑉&, then optimum 𝑅∗ = 𝑈𝑉&


