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https://kwchurch.github.io/index.html

Agenda

* Homework * New Business

* Assignment 2: HuggingFace
Pipelines

* Background Material

e Old Business
e Colab

* Deep Nets: Inference
 Classification & Regression
* Anything = Vector

e Machine Translation
e Fill Mask
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* bertviz
* Deep Nets: Fine-Tuning
* Easy: inference
* Hard: pre-training
* Not too hard: fine-tuning
e Code: colab
 HuggingFace Tutorial
* HuggingFace Colab
* run glue example



https://kwchurch.github.io/teaching/2023-fall/CS6120/assignments/assignment.02/HuggingFace_pipelines.html
https://kwchurch.github.io/teaching/2023-fall/CS6120/assignments/assignment.02/HuggingFace_pipelines.html
https://colab.research.google.com/drive/1D2VCOqfoBPxJpSo6jWTnQY83Qgc81UuC?usp=sharing
https://colab.research.google.com/drive/1N-Nbu6c1EOemGXPk3G-zpnw2GxAZnQ3a?usp=sharing
https://huggingface.co/docs/transformers/tasks/sequence_classification
https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/pytorch/sequence_classification.ipynb
https://colab.research.google.com/drive/1Oyrv4of7gxLz_TCgEuGE_LJpjy3jjabS?usp=sharing

https://eluebenchmark.com/
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*IGLUE

aL UWNLP

The General Language Understanding Evaluation (GLUE) benchmark is a collection of resources for training, evaluating, and analyzing
natural language understanding systems. GLUE consists of:

Q) DeepMind

« A benchmark of nine sentence- or sentence-pair language understanding tasks built on established existing datasets and selected to
cover a diverse range of dataset sizes, text genres, and degrees of difficulty,

« A diagnostic dataset designed to evaluate and analyze model performance with respect to a wide range of linguistic phenomena found
in natural language, and

« A public leaderboard for tracking performance on the benchmark and a dashboard for visualizing the performance of models on the
diagnostic set.

The format of the GLUE benchmark is model-agnostic, so any system capable of processing sentence and sentence pairs and producing
corresponding predictions is eligible to participate. The benchmark tasks are selected so as to favor models that share information across
tasks using parameter sharing or other transfer learning techniques. The ultimate goal of GLUE is to drive research in the development of
general and robust natural language understanding systems.
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https://gluebenchmark.com/

Attention used to be called Alignment
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e Attention is just another learned parameter, a number
for each encoder hidden layer for each decoding step,
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From slides from last year https://jalammar.github.io/visualizing-neural-machine-
translation-mechanics-of-seq2seq-models-with-attention/



https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Some BERT Models
https://github.com/google-research/bert

BERT-Large, Uncased (Whole Word Masking):
e 24-layer, 1024-hidden, 16-heads, 340M parameters

 BERT-Large, Cased (Whole Word Masking):
e 24-layer, 1024-hidden, 16-heads, 340M parameters

 BERT-Base, Uncased:
e 12-layer, 768-hidden, 12-heads, 110M parameters

 BERT-Large, Uncased:
e 24-layer, 1024-hidden, 16-heads, 340M parameters

 BERT-Base, Cased:
e 12-layer, 768-hidden, 12-heads, 110M parameters

 BERT-Large, Cased:
e 24-layer, 1024-hidden, 16-heads, 340M parameters

* BERT-Base, Multilingual Cased (New, recommended):
* 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
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https://github.com/google-research/bert
https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2019_05_30/wwm_cased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip

Smaller Models
https://github.com/google-research/bert

* Trade-off: Costs v. Performance

L=2

e Costs:

L=6

e * Space

L=10 -
* Time

Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same

regime as the original model. i Powe r

Here are the corresponding GLUE scores on the test set:

N * Industry Practice

SST- .
Model Score ColLA MRPC STS-B QQP m QNLI(v2)

2 ]

et o * Train large models and then make
Tiny 4. I 83. 81.1/711 74.3[736  62.2/83.4 70.2 : 815 . . .
them smaller (distillation)

BERT-
Mini (0X0) 85.9 81.1/71.8 75.4[73.3 66.4/86.2 74.8
BERT-

Small 71.2 27.8 89.7 834762 78.8[77.0 68.1/87.0 776

BERT-

. 735 38.0 89.6 86.6/81.6 80.4/78.4 69.6/87.9 80.0
Medium
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https://github.com/google-research/bert

What do we mean by layers, heads, etc.?
colab
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https://colab.research.google.com/drive/1N-Nbu6c1EOemGXPk3G-zpnw2GxAZnQ3a?usp=sharing

A Multiscale Visualization of Attention in the

Transformer Model (bertviz)
https://aclanthology.org/P19-3007.pdf

Gender-specific term Name Occupation
Layer: 5 ¥ . Layer: 5 4 Layer: 5 % .
The The Later Later The The
girl girl ) : doctor doctor
() and and Alice Alice asked asked
ﬁ the the came came the the
boy boy w w® nurse use
walked walked to to a // a
home home Bob Bob question // question
. s ;
She - She She - She she She
Layer: 5 ¢ Layer: 5 % Layer: 5 %
The The Later Later The The
girl girl s , doctor doctor
Q and and Alice Alice asked asked
A B the the came came the the
boy boy up up nurse nurse
walked walked to to a a
home home Bob Bob question question
He - He He He He - He

Figure 4: Attention pattern in GPT-2 related to coreference resolution suggests the model may encode gender bias.
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https://aclanthology.org/P19-3007.pdf

https://arxiv.org/pdf/1906.04341.pdf

Head 8-10
- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation
[CLS] [CLS]

Head 8-11

- Noun modifiers (e.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation

It It It It [CTthl [TCthl
x % e e
goes -goes declmetd :Iecllned [C1I:hse] %_ChI;S] 45-year-old 45-year-old
on ron o 0 former former
) 4 . ) : complicated . complicated
to to dlsculss ’ fﬂlscuss language, X language Gener.al Gener_al
plug plug its its i ih Electric Electric
a a plans -plans the the fCo.» y Co- .
few few for | for huge huge exef;uuL;: :;ii:slve
diversified: diversified upgrading:' _-upgrading new, s it it
Fidelity Y\l  Fidelity its\ A its Laa‘"s’ f;’l will, will
funds funds current<< current mddiedd uddied be be
by by product product the the ea'ts':eisr f:izler
name name line line fight fight time time
[SEP] [SEP] [SEP] [SEP] [SEF] SEF] [SEP] [SEP]
Head 7-6 Head 4-10

- Possessive pronouns and apostrophes
attend to the head of the corresponding NP

- 80.5% accuracy at the poss relation

many-. many

employees employees

[CLS], [CLS] are are

Not, Not working “working
his his at at
autograph;autograph its its

QNN giant, giant
power-hitter power-hitter  Renton, \ Renton
McGwire - S, ~~McGwire .

's/. Wash.

[SEP] plant

[SEP]

9/11/2023

- Passive auxiliary verbs attend to the
verb they modi

- 82.5% accuracy at the auxpass relation

[CLS]
But

in

the

=~ absence
of
panicky
~trading
its
presence
was
never

Head 9-6

- Prepositions attend to their objects
- 76.3% accuracy at the pobj relation

[CLS]
[CLS] [CLS] Short-term
Prices Prices interest- -interest
of . sof rates- -\ -rates
Treasury »Treasury fell - — N fell
bonds - bonds yesterday yesterday
tumbled- tumbled at, at
in in the the
moderate moderate government« . /" —~government
to to s 's
active - active weekly~ o/~ weekly

trading” trading Treasury-/ - ~Treasury
B . bill < /———==bill
[SEP]/ [SEP] auction- ‘auction
\
(sep)/ [SEP]

Head 5-4
- Coreferent mentions attend to their antecedents

- 65.1% accuracy at linking the head of a
coreferent mention to the head of an antecedent

with with

Kim Kim joining joining
today today peace peace
as as talks talks
she she between between
got got Israel Israel
some some and and
expert expert the | the
opinions opinions Palestinians Palestinians
on on . .
the the The The
damage damage negotiations negotiations
to to are are
her her
home home

Figure 5: BERT attention heads that correspond to linguistic phenomena. In the example attention maps, the
darkness of a line indicates the strength of the attention weight. All attention to/from red words is colored red;
these colors are there to highlight certain parts of the attention heads’ behaviors. For Head 9-6, we don’t show
attention to [SEP] for clarity. Despite not being explicitly trained on these tasks, BERT’s attention heads perform
remarkably well, illustrating how syntax-sensitive behavior can emerge from self-supervised training alone.

What Does BERT Look At?
An Analysis of BERT’s Attention

Kevin Clark'

Urvashi Khandelwal!  Omer Levy!

Christopher D. Manning®

fComputer Science Department, Stanford University
Facebook AI Research
{kevclark, urvashik, manning}@cs.stanford.edu
omerlevy@fb.com
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https://arxiv.org/pdf/1906.04341.pdf

Review

9/11/2023
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Standard 3-Step Recipe

Step Description Time Hardware

1 Pre-Training Days/Weeks Large GPU cluster
2 m Fine-Tuning (fit) Hours/Days 1+ GPUs

3 Inference (predict) Seconds/Minutes 0+ GPUs

9/11/2023
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Guide Book App

sy Example of Fine-Tuning (aka, fit)
S fit: £, +data > fyos

fpre: Resnet
* Maps images (jpg files) = classes (strings)
* Trained on ImageNet
* input (x): 14M images (of many things)
* output (y): 1000 classes (strings)
* data: flowers

* input (x): 2195 pictures of flowers

* outputs (y): 5 classes of flowers
* Tulip, Dandelion, Sunflower, Daisy, Rose

Sunflower

fpost: %3
* Maps images (jpg files) = flowers (strings)
* Reject modeling is hard

Tulip

9/11/2023 CS6120 12



Stopping distance (ft)

60 80 100 120

40

20

0

Fine-Tuning (Fit) in R (Statistics Package)

Make deep nets look like regression

Black Points:
cars dataset

(Not much programming)

 Notational Conventions:
* Observations: Circles
* Models (f): Red Lines

* Prediction: f(x)

* Use model (f) to map
* input x (speed) to

Red Line: e output y (stopping distance)
Model (f) * For linear regression,
e fisa polynomial
* For gft,

* fis typically a model from a hub

Speed (mph)

9/11/2023 CS6120 13



Stopping distance (ft)

60 80 100 120

40

20

0

Datasets
Example: Cars

Speed (mph)

9/11/2023

> head(cars)
speed dist
2

10

4
22
16
10

OUVTHA WN PR
O 0o ~N ~N DD

CS6120

Two Columns:

1. carsSspeed
2. carsSdist

14



Example of Datasets in HuggingFace

https://huggingface.co/datasets/dair-ai/emotion

~ . Hugging Face

emotion @  like

Text Classification ~ Su . multi-class-classification ~ Language @ English  Mul
machine-generated S [ original emotion-classification L
Dataset card Files and versions Community 6

BB Dataset Viewer

Subset Split

split (20k rows) v train (16k rows)

text (string)
"i didnt feel humiliated"

"i can go from feeling so hopeless to so damned hopeful just from being around someone who
cares and is awake"

"im grabbing a minute to post i feel greedy wrong"

"i am ever feeling nostalgic about the fireplace i will know that it is still on the property"
"i am feeling grouchy"

"ive b@?ﬁlﬁsﬁiffﬁE? little burdened lately wasnt sure why that was"

"ive been taking or milligrams or times recommended amount and ive fallen asleep a lot faster
but 1 aleo feel like <o funnv"

Models

monolingual

-

™ other

<> API

label (class label)

0

CS6120

Datasets Spaces

10K<n<100K

BH Go to dataset viewer

> head(cars)
speed dist

1 4 2

oocs | 2 4 10
3 / 4

f 4 /22
5 8 16

S 9 10

</> Use in dataset library 2 Edit dataset card
@ Train in AutoTrain [ Papers with Code

@ Evaluate models F HF Leaderboard

github.com  16.1MB

28.2MB 436,809

Models trained or fine-tuned on dair-ai/emotion

15

@ aiknowyou/it-emotion-analyzer



: > head(cars)
Emotion =2 GLUE (Cola speed dist
2
10
4
22
16
10

https://huggingface.co/datasets/glue/viewer/cola/train

an

[¥ HuggingFace Q. Searchmodels, datasets, users... # Models  + Datasets Spaces

Docs & Solutions  Pricing

& Datasets: glue T Qlike 29

Tasks: natural-language-inference  acceptability-classification  text-classification-other-paraphrase-identification ~ +4 Task Categories: text-classification  text-scoring  Languages: en  Multilinguali

H W N -

Size Categories: 10K<n<l100K  Licenses: cc-by-4-0 Language Creators: unknown  Annotations Creators: unknown Source Datasets: unknown

» Dataset card "I~ Files and versions

Terminology:

O oo NN P H

© Dataset Preview Te r m i n O I Ogy :

Splits

P

Subset
Subset s
cola AR - train w
validation

sentence (string) label (class label) idx (int)
Our friends won't buy this analysis, let alone the next one we propose. 1 (acceptable) [¢]
One more pseudo generalization and I'm giving up. 1 (acceptable) 1
One more pseudo generalization or I'm giving up. 1 (acceptable) 2
The more we study verbs, the crazier they get. 1 (acceptable) 3
Day by day the facts are getting murkier. 1 (acceptable) 4
I'1l fix you a drink. 1 (acceptable) 5
Fred watered the plants flat. 1 (acceptable) 6
Bill coughed his way out of the restaurant. 1 (acceptable) 7
We're dancing the night away. 1 (acceptable) 8
Herman hammered the metal flat. 1 (acceptable) 9
The critics laughed the pnlav off the stasge. 1 (accentable) 10

9/11/2023 CS6120 16


https://huggingface.co/datasets/glue/viewer/cola/train

(

.e

{x}

Datasets in HuggingFace colab

& Datasets in HuggingFace.ipynb B Comment 2% Share €% @

File Edit View Insert Runtime Tools Help Lastedited on September 30

+ Code + Text Connect ~ A

Compare with https://huggingface.co/datasets/imdb The IMDB dataset has three splits. Each split has two columns (features).

[ 1] for split in imdb:
print(split + '\t' + str(imdb[split]))

train Dataset ({
features: ['text', 'label'],
num_rows: 25000

})

test Dataset ({
features: ['text', 'label'],
num_rows: 25000

})

unsupervised Dataset ({
features: ['text', 'label'],
num_rows: 50000

})

imdb[ 'train' ][ 'text'][0]

L @

'I rented I AM CURIOUS-YELLOW from my video store because of all the controversy that surrounded it when it was first released in
1967. I also heard that at first it was seized by U.S. customs if it ever tried to enter this country, therefore being a fan of £
ilms considered "controversial" I really had to see this for myself.<br /><br />The plot is centered around a young Swedish drama
student named Lena who wants to learn everything she can about life. In particular she wants to focus her attentions to making so
me sort of documentary on what the average Swede thought about certain political issues such as the Vietnam War and race issues i
n the United States. In between asking politicians and ordinarv denizens of Stockholm about their opinions on politics, she has s



https://colab.research.google.com/drive/1NYMqvNlf6f2b6L3BLIfO_o9Ne6wKZ0oO?usp=sharing

Stopping distance (ft)

100 120

60 80

40

20

0

g/m (General Linear Models) in R (and Sklearn)

9/11/2023

Speed (mph)

# Create the black points
plot (cars, xlab="Speed (mph)", ylab="Stopping distance (ft)")

g = glp(@ist ~ poly(speed, 2), data=cars) glm: fit poly model
10 o = order (cars$speed) :
11 # Show predictions as a red line with data

lines (cars$speed[o], predict(g,cars)[o], col="red", 1lwd=3)

- W

~

-
N

predict: dist = g(cars$speed)

CS6120 18



Fine-Tuning (fit) in GFT
fpre + data — fpost

gft_fit ——eqn 'classify: label ~ text' \

* Flowers
R ——model H:bert-base-cased \
o .
fp"‘e' esnet ——data H:emotion \
e data: flowers ——output_dir $outdir fpre: Pre-trained Model

(b

fpost: Post-trained Model

Sunflower

7 g = glm(dist ~ poly(speed, 2), data=cars)
0

Fine-Tuning (fit) in R

o CS6120 19




. Hugging Face Q_ Search models, datasets, users...

& Datasets: emotion T like 18

Tasks: multi-class-classification  text-classification-other-emotion-classification ~ Task Categories: text-classification

Emotion Dataset
classify: label~text

Language Creators: machine-generated  Annotations Creators: machine-generated  Source Datasets: original

¢ Dataset card ’I= Files and versions =
rask/Loss

®© Dataset Preview
Subset Split

default v train

text (string)
i didnt feel humiliated

i can go from feeling so hopeless to so damned hopeful just from being around someone who cares and is awake

im grabbing a minute to post i feel greedy wrong

i am ever feeling nostalgic about the fireplace i will know that it is still on the property

i am feeling grouchy

ive been feeling a little burdened lately wasnt sure why that was

ive been taking or milligrams or times recommended amount and ive fallen asleep a lot faster but i also feel like so funny
i feel as confused about life as a teenager or as jaded as a year old man

i have been with petronas for years i feel that petronas has performed well and made a huge profit

i feel romantic too

i feel like i have to make the suffering i m seeing mean something

9/11/2023 CS6120
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Columns

label (class label)

0

(sadness)
(sadness)
(anger)
(love)
(angerx)
(sadness)
(surprise)
(fear)
(Foy)
(love)

(sadness)

20



Fine-Tuning (fit): Numerous Use Cases
fpre + data - fpost

* Flowers gft_fit ——eqn 'classify: label ~ text' \
* fpre3 Resnet —-model H:bert-base-cased \
* data: flowers ——data H:emotion \
* Emotion Classification ——output_dir $outdir
* fpre: https://huggingface.co/bert-base-uncase
* data: https://huggingface.co/datasets/dair — ai/emaotion frost: Post-trained Model
* GLUE
* SQUAD
* Machine Translation 7 g = glm(dist ~ poly(speed, 2), data=cars)

* Speech Recognition
* Vision Fine-Tuning (fit) in R

* and much more

9/11/2023 CS6120 21


https://huggingface.co/bert-base-uncased
https://huggingface.co/datasets/dair-ai/emotion

GLUE COLA SUBSET

GLUE Subsets
m Bill sang himself to sleep. 1 (acceptable)

COLA H:glue,cola E;'Lshqoﬁseze‘j A0S U SUED ey
SST2 H -8 ue,sst2 Bill sang Sue to sleep. 1 (acceptable)
WNLI H:glue,wnli The elevator rumbled itself to the
round 0 (unacceptable)
MRPC H:glue,mrpc e . |
If the telephone rang, it could ring R ———
QNLI H:g ue’qn“ itself silly. >
QQP H'g ue,qgp She yelled hoarse. 0 (unacceptable)
. ’
gliue,SS Ted cried to sleep. 0 (unacceptable
SSTB H:glue,sstb d cried to sl ( ble)
MNLI H -8 ue,mnll The tiger bled to death. 1 (acceptable)

9/11/2023 CS6120 22
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e
=

GLUE COLA SUBSET

GFT program for COLA

https://github.com/kwchurch/gft/blob/master/examples/fit examples . .
/model.HuggingFace/language/data.HuggingFace/glue/cola.sh Bill sang himself to Sleep- 1 (acceptable)

Bill squeezed the puppet through

1 (acceptable
#!/bin/sh the hole. ( P )

Bill sang Sue to sleep. 1 (acceptable)
echo hostname = “hostname’

The elevator rumbled itself to the
0 (unacceptable)

gft_fit —-—model H:bert-base-cased \ ground.
—-data H:glue,cola \ If the telephone rang, it could rin
, ) . . P 5 & 1 (acceptable)
—-metric H:glue,cola \ itself silly.
——figure_of_merit matthews_correlation \
) , She yelled hoarse. 0 (unacceptable)
——output_dir $1 \
-—eqn 'classify: label ~ sentence' \ .
, Ted cried to sleep. 0 (unacceptable)
——num_train_epochs 3
The tiger bled to death. 1 (acceptable)

9/11/2023 CS6120 23


https://github.com/kwchurch/gft/blob/master/examples/fit_examples/model.HuggingFace/language/data.HuggingFace/glue/cola.sh
https://github.com/kwchurch/gft/blob/master/examples/fit_examples/model.HuggingFace/language/data.HuggingFace/glue/cola.sh

Simple Equations Cover Many Cases of Interest
GLUE: A Popular Benchmark

S omasa_smien

COLA
SST2
WNLI
MRPC
QNLI
QQP
SSTB
MNLI

9/11/2023

H.g
H:g
H:g
H:g
H:g
H:g
H:g

glue,cola classify :

ue,sst2 classify :
ue,wnli classify :
ue,mrpc classify :
ue,qnli  classify :

ue,qqp classify :

label ~ sentence

label ~ sentence

label ~ sentence

label ~ sentencel + sentence?2
label ~ sentencel + sentence?2
label ~ question + sentence

ue,sstb [regress|: label ~ questionl + question?2

ue,mnli classify :

label ~ premise + hypothesis

CS6120 24



Equation Keywords = Pipeline Tasks

m_

GLUE COLA H:glue,cola classify : label ~ sentence
SQuAD 1.0 H:squad [classi f y_spans:]answers~question + context
SQuAD 2.0 H:squad_v2 classify_spans: answers~question + context
CONLL2003 POS H:conll2003 [classi f y_tokens:]pos_tags~tokens

NER H:conll2003 classify_tokens:ner_tags~tokens
TIMIT H:timit_asr : text~audio
Amazon

Reviews H:amazon_reviews_multi classify : label ~ question + sentence

VAD C:Sgft/datasets/VAD/VAD _regress: Valence + Arousal + Dominance ol Word

9/11/2023



gft Cheat Sheet

(General Fine-Tuning)

4+1 Functions

1. gft_fit: fyre 2 fpose (fine-tuning)
* 4 Arguments, --output_dir, --metric, --splits
* (plus most args in most hubs)

2. gft_predict: f(x) — ¥ (inference)

* Input: 4 Arguments (x from data or stdin)
e Output: y for each x

3. gft _eval: Score model on dataset
* Input: 4 Arguments, --split, --metric, ...
* Qutput: Score

4. gft summary: Find good stuff
* |nput: 4 Arguments
* (mayinclude: __contains__, _infer )

5. gft _cat_dataset: Output data to stdout
* Input: 4 Arguments (--data, --eqgn)

4 Arguments

»--eqn task:y~xq+ xy

e --task

[EEY

20NV A WN

classify (text-classification)
classify_tokens (token-classification)
classify _spans (QA, question-answering)
classify _audio (audio-classification)
classify _images (image-classification)
regress

text-generation

MT (translation)

ASR (ctc, automatic-speech-recognition)
fill-mask



Stopping distance (ft)

40 60 80 100 120

20

Fit a model (g) to data (cars)

Regression In R:

Summarize (almost) anything

V‘V

5 10 15 20 25

Speed (mph)

9/11/2023

plot(cars, xlab="Speed (mph)", ylab="Stopping distance (ft)")
g = glm(dist ~ poly(speed,2), data=cars)
> 0 = order(cars$speed)
> lines(cars$speed[o], predict(g,cars)[o], col="red", 1lwd=3)
CS6120 27



Stopping distance (ft)

20 40 60 80 100 120
I I

0

Regression In R:

Summarize (almost) anything

9/11/2023

Speed (mph)

> summary(cars)

speed

Min.
1st Qu.:
Median :
Mean

3rd Qu.:

Max.
I

CS6120

N R R

U1 ©O T T N H
SO0 PO SS

dist
Min. . 2.00
1st Qu.: 26.00
Median : 36.00
Mean : 42.98
3rd Qu.: 56.00
Max . :120.00
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Stopping distance (ft)

40 60 80 100 120

20

Fit a model (g) to data (cars)

Regression In R:

Summarize (almost) anything

9/11/2023

Speed (mph)

25

> plot(cars, xlab="Speed (mph)", ylab="Stopping distance (ft)")
> g = glm(dist ~ poly(speed,2), data=cars)
o = order(cars$speed)

>
> lines(cars$speed[o], predict(g,cars)[o], col="red", 1lwd=3)
>

summary(g) )
0 Summarize a model (g)
Call:

glm(formula = dist ~ poly(speed, 2), data = cars)

Deviance Residuals:

Min 1Q Median 3Q Max Opportumty

Coefficients:
Estimate Std. Error t value Pr(Gltl)
(Intercept) 42 .980 2.146 20.026 < 2e-16 ***
poly(speed, 2)1 145.552 15.176 9.591 1.21e-12 ***
poly(speed, 2)2 22.996 15.176  1.515 0.136

Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘*’ .05 ‘.’ 0.1 ¢’ 1

(Dispersion parameter for gaussian family taken to be 230.3131)
Null deviance: 32539 on 49 degrees of freedom

Residual deviance: 10825 on 47 degrees of freedom

AIC: 418.77

Number of Fisher Scoring iterations: 2
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oft summary

* Summarize almost anything
* Models
* Datasets



Tasks

* classify, text-classificationm
B y € Rory € RY

* QA, Question Answering, classify spans y for each start/end of span

e token classification

 NER (Named Entity Recognition)
e POS (Part of Speech Tagging)

y for each token

e translation, MT

. "y f h ph
* ASR, Automatic Speech Recognition, ctc
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gft Cheat Sheet

(General Fine-Tuning)

4+1 Functions

1. gft_fit: fyre 2 fpose (fine-tuning)
* 4 Arguments, --output_dir, --metric, --splits
* (plus most args in most hubs)

2. gft_predict: f(x) — ¥ (inference)

* Input: 4 Arguments (x from data or stdin)
e Output: y for each x

3. gft _eval: Score model on dataset
* Input: 4 Arguments, --split, --metric, ...
* Qutput: Score

4. gft summary: Find good stuff
* |nput: 4 Arguments
* (mayinclude: __contains__, _infer )

5. gft _cat_dataset: Output data to stdout
* Input: 4 Arguments (--data, --eqgn)

4 Arguments

RO ~NOUTE WD R

classify (text-classification)
classify_tokens (token-classification)
classify _spans (QA, question-answering)
classify _audio (audio-classification)
classify _images (image-classification)
regress

text-generation

MT (translation)

ASR (ctc, automatic-speech-recognition)
fill-mask



HuggingFace run_glue.py colab

GFT

https://github.com/huggingface/transfor

mers/blob/main/examples/pytorch/text-

classification/README.md

s o |t

COLA
SST2

WNLI

MRPC

QNLI
QQpP
SSTB

MNLI

9/11/2023

H:glue,cola
H:glue,sst2

H:glue,wnli
H:glue,mrpc
H:glue,gnli

H:glue,qqp

H:glue,sstb

H:glue,mnli

classify :
classify :

classify :
classify :

classify :

classify :

regress

classify

label ~ sentence
label ~ sentence

label ~ sentence
label ~ sentencel + sentence?

label ~ sentencel + sentence2
label ~ question + sentence
: label ~ questionl + question2

: label ~ premise + hypothesis

CS6120

Text classification examples ~

GLUE tasks ¢

Based on the script run_glue.py .

Fine-tuning the library models for sequence classification on the GLUE benchmark: General Language
Understanding Evaluation. This script can fine-tune any of the models on the hub and can also be used for a
dataset hosted on our hub or your own data in a csv or a JSON file (the script might need some tweaks in that
case, refer to the comments inside for help).

GLUE is made up of a total of 9 different tasks. Here is how to run the script on one of them:

©

export TASK_NAME=mrpc

python run_glue.py \
—--model_name_or_path bert-base-cased \
——task_name $TASK_NAME \
—-do_train \
—-do_eval \
--max_seq_length 128 \
—-per_device_train_batch_size 32 \
—-learning_rate 2e-5 \
——num_train_epochs 3 \
——output_dir /tmp/$TASK_NAME/

where task name can be one of cola, sst2, mrpc, stsb, qqp, mnli, gnli, rte, wnli.
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HuggingFace run_glue.py colab

GFT

https://github.com/huggingface/transfor

mers/blob/main/examples/pytorch/text-

classification/README.md

o |t )

COLA
SST2

WNLI

MRPC

QNLI
QQpP
SSTB

MNLI

9/11/2023

H:glue,cola
H:glue,sst2

H:glue,wnli

H:glue,mrpc

H:glue,gnli
H:glue,qgp
H:glue,sstb

H:glue,mnli

classify

classify

classify :
classify :

classify :

classify :

regress

classify

: label ~ sentence

: label ~ sentence
label ~ sentence
label ~ sentencel + sentence2
label ~ sentencel + sentence2
label ~ question + sentence

: label ~ questionl + question2

: label ~ premise + hypothesis

CS6120

-

56
57
58
59
60
61
62
63
64
65
66

v task_to_keys = {

"cola":
"mnli":
"mrpc":
"gnli":
"qqp™:

"rte":

"sst2":
"stsb":
"wnli":

("sentence", None),
("premise", "hypothesis"),
("sentencel", "sentence2"),
("question", "sentence"),
("questionl", "question2"),
("sentencel™, "sentence2"),
("sentence", None),
("sentencel", "sentence2"),
("sentencel", "sentence2"),
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Trainer

https://huggingface.co/learn/nlp-course/chapter3/3?fw=pt

from datasets import load_dataset
from transformers import AutoTokenizer, DataCollatorWithPadding

raw_datasets = load_dataset("glue", "mrpc")

checkpoint = "bert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)

def tokenize_function(example):

return tokenizer(example["sentencel"], example["sentence2"], truncation=Tzrue)

tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)

9/11/2023 CS6120

from transformers import TrainingArguments

training_args = TrainingArguments("test-trainer")

from transformers import Trainer

trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,

tokenizer=tokenizer,

trainer.train()
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Steps

Datasets
e colab
* contains splits: train, validation, test

Tokenizing

e colab

* maps input text to a sequence of tokens
* where token is an offset into vocabulary

Model: f

* Includes tokenizer
* Typically based on BERT

Trainer
e colab

* For each epoch (pass over training split)
* Train (update f, using stochastic gradient descent)
* Evaluate (score f on validation split)

9/11/2023 CS6120

from transformers import TrainingArguments

training_args = TrainingArguments("test-trainer")

from transformers import Trainer

trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,

tokenizer=tokenizer,

)

trainer.train()
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https://en.wikipedia.org/wiki/Stochastic gradient descent
https://realpython.com/gradient-descent-algorithm-python

Stochastic gradient descent

Article Talk

From Wikipedia, the free encyclopedia

Stochastic gradient descent (often abbreviated SGD) is an iterative method for optimizing an objective
function with suitable smoothness properties (e.g. differentiable or subdifferentiable). It can be regarded as a
stochastic approximation of gradient descent optimization, since it replaces the actual gradient (calculated
from the entire data set) by an estimate thereof (calculated from a randomly selected subset of the data).
Especially in high-dimensional optimization problems this reduces the very high computational burden,
achieving faster iterations in exchange for a lower convergence rate.!']

While the basic idea behind stochastic approximation can be traced back to the Robbins—Monro algorithm of
the 1950s, stochastic gradient descent has become an important optimization method in machine learning.?!

Background |edit]

Main article: M-estimation
See also: Estimating equation

Both statistical estimation and machine learning consider the problem of minimizing an objective function that
has the form of a sum:

Q) = =3 Q)

where the parameter w that minimizes Q(w) is to be estimated. Each summand function @; is typically
associated with the 2-th observation in the data set (used for training).
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https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://realpython.com/gradient-descent-algorithm-python

https://en.wikipedia.org/wiki/Newton%27s

method

Newton's method 3p 40 languages

Article  Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

This article is about Newton's method for finding roots. For Newton's method for finding minima, see Newton's method in optimization.

In numerical analysis, Newton's method, also known as the Newton—Raphson method, named after Isaac Newton and Joseph Raphson, is a root-
finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a
real-valued function f; its derivative f*, and an initial guess x;, for a root of f. If f'satisfies certain assumptions and the initial guess is close, then

_ f(=o)

f'(zo)
is a better approximation of the root than x(. Geometrically, (x;, 0) is the x-intercept of the tangent of the graph of f'at (xy, f(x)): that is, the improved
guess, x1, is the unique root of the linear approximation of f at the initial guess, x;. The process is repeated as

 f(za)

f'(zn)
until a sufficiently precise value is reached. The number of correct digits roughly doubles with each step. This algorithm is first in the class of Householder's
methods, succeeded by Halley's method. The method can also be extended to complex functions and to systems of equations.

T =29

Tp4+1l = Tn

Description |edit]

The idea is to start with an initial guess, then to approximate the function by its tangent line, and finally to compute the x-intercept of this tangent line. This
x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated.

If the tangent line to the curve f{x) at x = x,, intercepts the x-axis at x,,;; then the slope is

f,(wn) _ f(zn) -0

Ty — Tpil ’
Solving for x, i O, F0))
n+1 9Ives

flzn) y=f0)
f'(zn) )
We start the process with some arbitrary initial value x,. (The closer to the zero, the better. But, in the
absence of any intuition about where the zero might lie, a "guess and check" method might narrow — -
the possibilities to a reasonably small interval by appealing to the intermediate value theorem.) The /
method will usually converge, provided this initial guess is close enough to the unknown zero, and

A

Tptl = T

\/

9/11/2023 CS6120
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https://en.wikipedia.org/wiki/Hill climbing

Hill Climbing XA 16 languages v

Article  Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

This article is about the mathematical algorithm. For other meanings such as the branch of motorsport, see Hillclimbing (disambiguation).

This article needs additional citations for verification. Please help improve this article by adding citations
@ to reliable sources. Unsourced material may be challenged and removed.

Find sources: "Hill climbing" — news - newspapers - books - scholar - JSTOR (April 2017) (Learn how and when to remove this

template message)

In numerical analysis, hill climbing is a mathematical optimization technique which belongs to the
family of local search. It is an iterative algorithm that starts with an arbitrary solution to a problem,
then attempts to find a better solution by making an incremental change to the solution. If the
change produces a better solution, another incremental change is made to the new solution, and so
on until no further improvements can be found.

For example, hill climbing can be applied to the travelling salesman problem. It is easy to find an
initial solution that visits all the cities but will likely be very poor compared to the optimal solution. =
The algorithm starts with such a solution and makes small improvements to it, such as switching the Asurf,ace with only om? max'mum_' H'!I'CI'mb'ng

. . i o o . techniques are well-suited for optimizing over such
order in which two cities are visited. Eventually, a much shorter route is likely to be obtained. surfaces, and will converge to the global maximum.

Hill climbing finds optimal solutions for convex problems — for other problems it will find only local

optima (solutions that cannot be improved upon by any neighboring configurations), which are not necessarily the best possible solution (the global
optimum) out of all possible solutions (the search space). Examples of algorithms that solve convex problems by hill-climbing include the simplex algorithm
for linear programming and binary search.[1:253 To attempt to avoid getting stuck in local optima, one could use restarts (i.e. repeated local search), or
more complex schemes based on iterations (like iterated local search), or on memory (like reactive search optimization and tabu search), or on memory-
less stochastic modifications (like simulated annealing).
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Trainer

https://huggingface.co/learn/nlp-course/chapter3/3?fw=pt

from datasets import load_dataset
from transformers import AutoTokenizer, DataCollatorWithPadding

raw_datasets = load_dataset("glue", "mrpc")

checkpoint = "bert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)

def tokenize_function(example):

return tokenizer(example["sentencel"], example["sentence2"], truncation=Tzrue)

tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)

9/11/2023 CS6120

from transformers import TrainingArguments

training_args = TrainingArguments("test-trainer")

from transformers import Trainer

trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,

tokenizer=tokenizer,

trainer.train()
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Steps (Review)

Datasets
e colab
* contains splits: train, validation, test

Tokenizing

e colab

* maps input text to a sequence of tokens
* where token is an offset into vocabulary

Model: f

* Includes tokenizer
* Typically based on BERT

Trainer
* colab

* For each epoch (pass over training split)
* Train (update f, using stochastic gradient descent)
 Evaluate (score f on validation split)

9/11/2023 CS6120

from transformers import TrainingArguments

training_args = TrainingArguments("test-trainer")

from transformers import Trainer

trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,

tokenizer=tokenizer,

)

trainer.train()
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Metric v. Loss

* Training Step
* Optimize loss in SGD

* Requirement:
* |oss is differentiable

* Users no longer need to know how
to differentiate loss

* with modern frameworks:
* pytorch, tensorflow

* Evaluation Step
* Use metric to score f

* Ideally, loss = metric

https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/README.md

S

COLA H:glue,cola  classify : label ~ sentence
SST2 H:glue,sst2  classify : label ~ sentence
WNLI H:glue,wnli  classify : label ~ sentence

9/11/2023

MRPC  H:glue,mrpc classify : label ~ sentencel + sentence2

QNLI H:glue,gnli  classify : label ~ sentencel + sentence2
QQp H:glue,gap classify : label ~ question + sentence
SSTB H:glue,sstb  regress : label ~ questionl + question2

MNLI H:glue,mnli  classify : label ~ premise + hypothesis

Task Metric Result Training time
CoLA Matthews corr 56.53 3117
SST-2 Accuracy 92.32 26:06

MRPC F1/Accuracy 88.85/84.07  2:21

STS-B  Pearson/Spearman corr. 88.64/88.48 213
QQP Accuracy/F1 90.71/87.49 2:22:26
MNLI Matched acc./Mismatched acc.  83.91/84.10 2:35:23
QNLI Accuracy 90.66 40:57

Accuracy 65.70 57

RTE
Not much better than chance
WNLI Accuracy 56.34 24


https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/README.md

Loss Functions in Deep Learning
https://insideaiml.com/blog/LossFunctions-in-Deep-Learning-1025

Loss Functions in Deep Learning

Sanober Ibrahim
2 years ago
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Table of Contents
e What Is a Loss Function?

e Types of Loss Functions
1. Regression Loss Functions
2. Binary Classification Loss Functions
3. Multi-class Classification Loss Functions
¢ Regression Loss Functions
1. Squared Error Loss
L1and L2 loss
2. Huber Loss
3. Pseudo-Huber loss function
¢ Binary Classification Loss Functions
1. Hinge Loss
2. Cross-entropy loss

9/1 1/2023 3. Sigmoid-Cross-entropy loss CS6120

4. Softmax cross-entropy loss
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Task Metric Result Training time

ColLA Matthews corr 56.53 317

Winograd Schema
G Ll | E \N N I—l MRPC F1/Accuracy 88.85/84.07 2:21
STS-B  Pearson/Spearman corr. 88.64/88.48 2:13

QQP Accuracy/F1 90.71/87.49 2:22:26
° The trophy doesn't fit in the MNLI Matched acc./Mismatched acc.  83.91/84.10  2:35:23
. QNLI Accuracy 90.66 40:57
brown suitcase
o NOt much better RTE Accuracy 65.70 57/
* because itis too large. M b WNLI  Accuracy 56.34 2

¢ W h at iS tO O I a rge ? Table 1. Time line of the Winograd Schema Challenge.
e A . Th e t rO p hy 1972: Winograd's (1972) thesis introduces the original example.
* B. The suitcase

2010: Levesque [47] proposes the Winograd Schema Challenge.

2010-2011: The initial corpus of Winograd schemas is created [50].

2014: Levesque's Research Excellence talk “On our best behavior” [48].

2016: The Winograd Schema Challenge is run at I[JCAI-16. No systems do much better than
chance [16].

2018: WNLI is incorporated in the GLUE set of benchmarks. BERT-based systems do no

better than most-frequent-class guessing [91].
2019, May: Kocijan et al. [43] achieve 72.5% accuracy on WSC273 using pretraining.

2019, June: Liu et al. [56] achieve 89.0% on WNLIL

from: https://doi.org/10.1016/j.artint.2023.103971
2019, Sakaguchi et al. [77] achieve 90.1% on WSC273.
9/11/2023 CS6120 November: 44
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A Surprisingly Robust Trick for the Winograd Schema Challenge

Vid Kocijan!, Ana-Maria Cretu?, Oana-Maria Camburu'?, Yordan Yordanov', Thomas Lukasiewicz"

University of Oxford
YImperial College London
3 Alan Turing Institute, London
firstname.lastname@cs.ox.ac.uk, a.cretu@Rimperial.ac.uk

Abstract

The Winograd Schema Challenge (WSC) da-
taset WSC273 and its inference counterpart
WNLI are popular benchmarks for natural lan-
guage understanding and commonsense rea-
soning. In this paper, we show that the perfor-
mance of three language models on Wsc273
consistently and robustly improves when fine-
tuned on a similar pronoun disambiguation
problem dataset (denoted WSCR). We addi-
tionally generate a large unsupervised Wsc-
like dataset. By fine-tuning the BERT lan-
guage model both on the introduced and on
the WSCR dataset, we achieve overall accu-
racies of 72.5% and 74.7% on Wsc273 and
WNLI, improving the previous state-of-the-
art solutions by 8.8% and 9.6%, respectively.
Furthermore, our fine-tuned models are also
consistently more accurate on the “complex”
subsets of WsC273, introduced by Trichelair
et al. (2018).

9/11/2023

to the small existing datasets making it difficult to
train neural networks directly on the task.

Neural networks have proven highly effective
in natural language processing (NLP) tasks, out-
performing other machine learning methods and
even matching human performance (Hassan et al.,
2018; Nangia and Bowman, 2018). However, su-
pervised models require many per-task annotated
training examples for a good performance. For
tasks with scarce data, transfer learning is often
applied (Howard and Ruder, 2018; Johnson and
Zhang, 2017), i.e., a model that is already trained
on one NLP task is used as a starting point for
other NLP tasks.

A common approach to transfer learning in
NLP is to train a language model (LM) on large
amounts of unsupervised text (Howard and Ruder,
2018) and use it, with or without further fine-tu-
ning, to solve other downstream tasks. Build-
ing on top of a LM has proven to be very suc-

3
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Winograd Schema (GLUE WNLI

Artificial Intelligence
Available online 11 July 2023, 103971
In Press, Corrected Proof () What's this? 71

The defeat of the Winograd Schema
Challenge

Vid Kocijan °! 9, i, Ernest Davis ®, Thomas Lukasiewicz ¢, Gary Marcus ©, Leora Morgenstern f

Show more v

+ Add to Mendeley <« Share 33 Cite

https://doi.org/10.1016/j.artint.2023.103971 7 Get rights and content 71

Abstract

The Winograd Schema Challenge—a set of twin sentences involving pronoun reference
disambiguation that seem to require the use of commonsense knowledge—was proposed
by Hector Levesque in 2011. By 2019, a number of Al systems, based on large pre-trained
transformer-based language models and fine-tuned on these kinds of problems, achieved
better than 90% accuracy. In this paper, we review the history of the Winograd Schema

Challenge and discuss the lasting contributions of the flurry of research that has taken
place on the WSC in the last decade. We discuss the significance of various datasets
developed for WSC, and the research community's deeper understanding of the role of
surrogate tasks in assessing the intelligence of an Al system.

Keywords

Commonsense reasoning; Winograd Schema Challenge
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Steps (Review, again)

Datasets
e colab
* contains splits: train, validation, test

Tokenizing

e colab

* maps input text to a sequence of tokens
* where token is an offset into vocabulary

Model: f

* Includes tokenizer
* Typically based on BERT

Trainer
* colab

* For each epoch (pass over training split)
* Train (update f, using stochastic gradient descent)
 Evaluate (score f on validation split)

9/11/2023 CS6120

from transformers import TrainingArguments

training_args = TrainingArguments("test-trainer")

from transformers import Trainer

trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,

tokenizer=tokenizer,

)

trainer.train()
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https://github.com/huggingface/transformers/blob/mai
n/examples/pytorch/text-classification/run glue.py

570 # Evaluation
. 571 if training_args.do_eval:
[ I ra I n e r- 572 logger.info("xx*x Evaluate sokx")
573
574 # Loop to handle MNLI double evaluation (matched, mis-matched)
° 575 tasks = [data_args.task_name]
CO a 576 eval_datasets = [eval_dataset]
577 if data_args.task_name == "mnli":
578 tasks.append("mnli-mm")
L4 FO r e a C h e pOC h 579 valid_mm_dataset = raw_datasets["validation_mismatched"]
580 if data_args.max_eval_samples is not None:
° . d . 581 max_eval_samples = min(len(valid_mm_dataset), data_args.max_eval_samples)
Tra I n (U p ate f, USIng SG D) 582 valid_mm_dataset = valid_mm_dataset.select(range(max_eval_samples))
583 eval_datasets.append(valid_mm_dataset)
° E I t Id t It 584 combined = {}
valuate (score f on validation spli
550 # Training 586 for eval_dataset, task in zip(eval_datasets, tasks):
. L. . 587 metrics = trainer.evaluate(eval_dataset=eval_dataset)
551 if training_args.do_train: 588
552 checkpoint = None
K . X X 589 max_eval_samples = (
553 if training_args.resume_from_checkpoint is not None: . .
K L K 590 data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
554 checkpoint = training_args.resume_from_checkpoint 501 )
555 1if last_checkpoint is not None:
et - point & 'n 592 metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
556 checkpoint = last_checkpoint 503
557 tra:l.r.\_result = tralner.tralr.!(resume_from_checkpo:.nt:checkpo1nt) 504 if task == "mnliomm":
558 metrlcs.— train_result.metrics 595 metrics = {k + "_mm": v for k, v in metrics.items()}
559 max_train_samples = (. ) . ) . 596 if task is not None and "mnli" in task:
560 data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) 597 combined.update (metrics)
561 ) 508
562 metrics["train_samples"] = min(max_train_samples, len(train_dataset)) 599 trainer.log_metrics("eval", metrics)
563 600 trainer.save_metrics("eval", combined if task is not None and "mnli" in task else metrics)
564 trainer.save_model() # Saves the tokenizer too for easy upload
565
566 trainer.log_metrics("train", metrics)
567 trainer.save_metrics("train", metrics)
568 trainer.save_state()
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https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py
https://colab.research.google.com/drive/1Oyrv4of7gxLz_TCgEuGE_LJpjy3jjabS?usp=sharing

https://github.com/huggingface/transformers/blob/main/exam

ples/pytorch/text-classification/run glue no trainer.py

e with trainer
e 649 lines of code
 without trainer
e 665 lines of code
e SGD is more obvious
* in both cases,
* the example is hardwired for GLUE
* no clear distinction between

* foreground:

e GLUE-specific functionality
* Names of tasks, loss, metric

* background:

* General purposefunctionality that applies
to many/most classification problems
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539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We skip the first 'n’ batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
else:
active_dataloader = train_dataloader
for step, batch in enumerate(active_dataloader):
outputs = model(*kbatch)
loss = outputs. loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == @ or step == len(train_dataloader) - 1:
optimizer.step()
1r_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1

if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)

if completed_steps >= args.max_train_steps:
break
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https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue_no_trainer.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue_no_trainer.py

https://github.com/huggingface/transformers/blob/main/exam
ples/pytorch/text-classification/run glue no trainer.py

539 for epoch in range(starting_epoch, args.num_train_epochs):
540 model.train() 573 mode . eval()
541 if args.with_tracking: 574 samples_seen = @
542 total_loss = 0 575 for step, batch in enumerate(eval_dataloader):
543 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: 576 with torch.no_grad():
544 # We skip the first “n° batches in the dataloader when resuming from a checkpoint 577 outputs = model(skxbatch)
545 active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) 578 predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
546 else: 579 predictions, references = accelerator.gather((predictions, batch["labels"]))
547 active_dataloader = train_dataloader 580 # If we are in a multiprocess environment, the last batch has duplicates
548 for step, batch in enumerate(active_dataloader): 581 if accelerator.num_processes > 1:
549 outputs = model(xxbatch) 582 if step == len(eval_dataloader) - 1:
550 loss = outputs. loss 583 predictions = predictions[: len(eval_dataloader.dataset) - samples_seen]
551 # We keep track of the loss at each epoch 584 references = references[: len(eval_dataloader.dataset) - samples_seen]
552 if args.with_tracking: 585 else:
553 total_loss += loss.detach().float() 586 samples_seen += references. shape (0]
554 loss = loss / args.gradient_accumulation_steps 587 metric.add_batch(
555 accelerator.backward(loss) >88 predictions=predictions,
i K . X 589 references=references,
556 if step % args.gradient_accumulation_steps == @ or step == len(train_dataloader) - 1: 590 )
557 optimizer.step() 501
558 lr_scheduler.step() 592 eval_metric = metric.compute()
559 optimizer.zero_grad() 593 logger.info(f"epoch {epoch}: {eval_metric}")
560 progress_bar.update(1) 594
561 completed_steps += 1 595 if args.with_tracking:
562 596 accelerator. log(
563 if isinstance(checkpointing_steps, int): 597 {
564 if completed_steps % checkpointing_steps == 0: 598 "accuracy" if args.task_name is not None else "glue": eval_metric,
565 output_dir = f"step_{completed_steps}" 599 "train_loss": total_loss.item() / len(train_dataloader),
566 if args.output_dir is not None: 600 "epoch": epoch,
567 output_dir = os.path.join(args.output_dir, output_dir) 601 "step": completed_steps,
568 accelerator.save_state(output_dir) 602 h
569 603 step=completed_steps,
570 if completed_steps >= args.max_train_steps: 604 )
571 break 605
572
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https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue_no_trainer.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue_no_trainer.py

Running Cola on Discovery
Virtual Environment

module load python/3.8.1
python3 —-m pip install —-user —-upgrade pip

python3 -m pip install ——user virtualenv
python3 -m venv $HOME/venv/transformers
source $HOME/venv/transformers/bin/activate
pip install ——upgrade pip

cd /work/k.church/githubs/transformers

pip install -e .

cd /work/k.church/githubs/transformers/examples/pytorch/text-classification/

pip install -r requirements.txt
pip install urllib3==1.26.6
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Running Cola on Discovery

outdir=/courses/CS6120.202410/data/GLUE/model_outputs/cola
mkdir -p Soutdir
dir=/work/k.church/githubs/transformers/examples/pytorch/text-classification

d_IUUE L/ SPELLal_LUREIIS AP . JSUIll

Cd SO Utd i r **Z;:CErain metrics sekkkk -

train_loss = 0.5148

train_runtime = 2:18:37.50

train_samples = 8551

Sh '/COla'Sh train_samples_per_second = 1.028

train_steps_per_second = 0.032

10/02/2023 15:20:02 — INFO — __main__ - *%* Evaluate xkx

. [INFO|trainer.py:761] 2023-10-02 15:20:02,237 >> The following columns in the evaluation set don't ha'
https'//glthub Com/google_resea rch/be r‘t ve a corresponding argument in ‘BertForSequenceClassification.forward® and have been ignored: sentenc)
hd b e, idx. If sentence, idx are not expected by ‘BertForSequenceClassification.forward', you can safely'

ignore this message.
[INFO|trainer.py:3213] 2023-10-02 15:20:02,240 >> *kik*x Running Evaluation sk

SST- MNLI- MNLI- [INFO|trainer.py:3215] 2023-10-02 15:20:02,240 >> Num examples = 1043
Model Score ColLA MRPC STS-B QQP QNLI(v2) [INFO|trainer.py:3218] 2023-10-02 15:20:02,241 >> Batch size = 8
2 m mm 100% 131/131 [05:03<00:00, 2.32s/it]
*kkkk eval metrics sekkkok
epoch = 1.0
BERT- eval_loss = 0.4678
. 64.2 0.0 . 811/711 743/736 622/834 70.2 70.3 81.5 eval_matthews_correlation = 0.4939
Tlny eval_runtime = 0:05:05.78
eval_samples = 1043
BERT eval_samples_per_second = 3.411
- eval_steps_per_second = 0.428
.. 65.8 (0X0) 5 811/718 754/733 664/862 74.8 74.3 84.1 (transformers) [k.church@c0170 text-classificationl]$ 1s -1t | head
Mini total 120
drwxrwx———+ 2 k.church users 4096 Oct 2 15:25 my_cola_model
BERT. —rwxrwx-——+ 1 k.church users 18621 Oct 2 12:01 run_xnli.py
= —-rw-rw————+ 1 k.church users 29229 Oct 2 12:01 run_glue_no_trainer.py
. . 834/762 788/770 681/870 77.6 770 86.4 —-rwxrwx———+ 1 k.church users 28270 Oct 2 12:01 run_glue.py
Small —rwxrwx-——+ 1 k.church users 33598 Oct 2 12:01 run_classification.py
-rw-rw———+ 1 k.church users 112 Oct 2 12:01 requirements.txt
—-rw-rw--——+ 1 k.church users 10725 Oct 2 12:01 README.md

BERT-

transformers k.church@c0170 text-classification]$ find my_cola_model
) 735 380 6 866/81.6 80.4/784 696/879  80.0 . : e ¢ 16 Find my_cola_
Medium my_cola_model/README . md

my_cola_model/all_results.json

my_cola_model/config.json

my_cola_model/eval_results.json

my_cola_model/pytorch_model.bin



https://github.com/google-research/bert

Agenda

* Homework * New Business

* Assignment 2: HuggingFace
Pipelines

* Background Material

e Old Business
e Colab

* Deep Nets: Inference
 Classification & Regression
* Anything = Vector

e Machine Translation
e Fill Mask

9/11/2023 CS6120

* bertviz
* Deep Nets: Fine-Tuning
* Easy: inference
* Hard: pre-training
* Not too hard: fine-tuning
* Code: colab
* HuggingFace Tutorial
* HuggingFace Colab
* run glue example
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https://kwchurch.github.io/teaching/2023-fall/CS6120/assignments/assignment.02/HuggingFace_pipelines.html
https://kwchurch.github.io/teaching/2023-fall/CS6120/assignments/assignment.02/HuggingFace_pipelines.html
https://colab.research.google.com/drive/1D2VCOqfoBPxJpSo6jWTnQY83Qgc81UuC?usp=sharing
https://colab.research.google.com/drive/1N-Nbu6c1EOemGXPk3G-zpnw2GxAZnQ3a?usp=sharing
https://huggingface.co/docs/transformers/tasks/sequence_classification
https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/pytorch/sequence_classification.ipynb
https://colab.research.google.com/drive/1Oyrv4of7gxLz_TCgEuGE_LJpjy3jjabS?usp=sharing

