
CS6120
Jiaji Huang

https://jiaji-huang.github.io

CS61209/11/2023 1

About myself

• PhD in electrical engineering from Duke University
• Thesis: statistical signal processing and machine learning
• Worked at Baidu Research on NLP and Speech
• Now at AWS, on Large Language Models

Announcement

• Discovery Cluster ready
• Check the 3rd link on syllabus

Motivating Task: Positive or Negative Reivew?

Example from slides of last term

https://docs.google.com/presentation/d/1ygP9I2_tTsNnWsElZGopArMcWwk0FNh-F4E5x2PM0so/edit

A Machine Learning Approach

Feature extraction

documents

0.5
1.8
⋮

-1.2
2.2
⋮

2.5
-2.0
⋮

Representations

classifier

👍

👎

How to build the pipeline

• Classical:
• Hand crafted features,

• e.g., bag of words (NLP), sift (computer vision), MEL filter banks (speech)
• Learn the classifier on training features

• Modern:
• End-to-end

Learn a (deep) network that extracts feature together with a classifier

• Cutting-edge
• Pretrain + (supervised) finetune + RLHF + task specific adaptation

this lecture

Amount of
Resources

Roadmap

• Document representation (classical)
• Bag of words
• tf-idf

• Word representation (modern)
• Word2vec and PMI
• Applications

• Classifier
• Naïve Bayesian classifier
• Softmax classifier

Roadmap

• Document representation (classical)
• Bag of words
• tf-idf

• Word representation (modern)
• Word2vec and PMI
• Applications

• Classifier
• Naïve Bayesian classifier
• Softmax classifier

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

tf-idf

• Words have different importances, overlooked by simple count
• tf: term frequency (multiple ways to define)

𝑡𝑓!,# =
𝑐𝑜𝑢𝑛𝑡(𝑡, 𝑑)
∑! 𝑐𝑜𝑢𝑛𝑡(𝑡, 𝑑)

𝑡𝑓!,# = log[1 + 𝑐𝑜𝑢𝑛𝑡(𝑡, 𝑑)]
• idf: inverse document frequency

𝑖𝑑𝑓! = log
#	𝑡𝑜𝑡𝑎𝑙	𝑑𝑜𝑐𝑠

#𝑑𝑜𝑐𝑠	𝑡ℎ𝑎𝑡	ℎ𝑎𝑣𝑒	𝑡𝑒𝑟𝑚	𝑡
• tf-idf for word 𝑡 in document 𝑑: 𝑡𝑓!,#×𝑖𝑑𝑓!

Implementation*

* Example is taken from here

Showing a python demo …

https://medium.com/analytics-vidhya/nlp-feature-selection-using-tf-idf-db2f9eb484fb

Brain storming

• Ways to improve bag of words representation?
• Word order information: counts of tuple of n words (n-gram)

• tf is unigram probability in document
• For “new” word: sub-word counts
• More efficient: dimension reduction, PCA etc…
• …

Dimension Reduction

SVD

samples

features

• For i=1, …, reduced_dimension:
• Find next orthogonal direction with biggest variance
• Project feature to this direction

• Easily solved by singular value decomposition (SVD)

directions

projections

Roadmap

• Document representation (classical)
• Bag of words
• tf-idf

• Word representation (modern)
• Word2vec and PMI
• Applications

• Classifier
• Naïve Bayesian classifier
• Softmax classifier

Word representation

• Endow each word a vector
• Most naïve way: one-hot vector, length equal to vocab size
• A better way, ensure
 Similar words are “nearby in semantic space”

Word representation

• Aka “word embedding”, as it’s embedded into a space
• Why represent them as vectors?

One use case: Word Analogy

• Allows us to use linear algebra
• Man to woman is like king to ?

woman

man

king

?

man – woman = king - ?
Þ ? = king – man + woman
Þ Take ? as the nearest neighbor of RHS

word2vec

Deep dive into skip-gram
How do we train it? Suppose a window size of 2

Figure taken from blogpost

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Deep dive into skip-gram

• Viewed as 2-layer network
• e.g., receive a training sample (x=the, y=quick)

the

⋮

fox

quick

Look-up embedding layer

the

⋮

fox

quick

the

Linear layer softmax

P(y=quick)

Maximize it

P(y=fox)
P(y=the)

𝑠!, . . , 𝑠" =
𝑒#!

∑$%!" 𝑠$
, … ,

𝑒#"
∑$%!" 𝑠$

𝑊 𝐶

Why softmax here

• The outputs after linear layer are not probabilities
• i.e., they don’t add to 1
• Softmax converts them to probabilities
• e.g., consider

[𝑠$, … , 𝑠%] = [0.6, 1.1, −1.5, 1.2, 3.2, −1.1]

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑠$, … , 𝑠% =
𝑒&!

∑'($% 𝑠'
, … ,

𝑒&"
∑'($% 𝑠'

= [0.055,0.090,0.0067,0.10,0.74,0.010]

We will revisit this later

Deep dive into skip-gram

• The overall training objective is

min
)
E
*,+

− log 𝑝)(𝑦|𝑥)

where Θ are parameters in the network
• Typically, we use 𝑊 as word representation
• Trained by stochastic gradient descent (SGD)
• Details in last part of this lecture!

skip-gram with negative sampling

• Vocab can be huge
• huge summation on softmax denominator!
• An efficient variant: contrast with negative samples
• P(x and y co-occur) = 𝜎 𝑊*,𝐶+ ,

 where 𝜎 𝑠 = $
$-.#$

 , sigmoid function

Will revisit this later

skip-gram with negative sampling

• Denote negative samples as 𝑦' , 𝑖 = 1,… , 𝑘 from 𝑞(𝑦)
• Maximize:

log 𝜎 𝑊*,𝐶+ +E
'($

/

log 𝜎 −𝑊*,𝐶+%

• In practice, 𝑞(𝑦) is uni-gram probability
• Is this a good approximation for softmax?

Packages

• native c implementation
• handy python package: genism, fastText, …

https://github.com/tmikolov/word2vec
https://radimrehurek.com/gensim/models/word2vec.html
https://fasttext.cc/docs/en/support.html

Why so successful

• See Prof. Church’s opinion piece

• A few initial successes
• Plenty of room to improve
• Publish code and data

https://www.cambridge.org/core/journals/natural-language-engineering/article/word2vec/B84AE4446BD47F48847B4904F0B36E0B

PMI

• The PMI (point wise mutual information) between two words 𝑤$, 𝑤0
𝑃𝑀𝐼(𝑤$; 𝑤0) ≜ log0

𝑝(𝑤$, 𝑤0)
𝑝 𝑤$ 𝑝(𝑤0)

= log0
𝑝(𝑤$|𝑤0)
𝑝(𝑤$)

• Consider 𝑤0 as context word
• 2D count table

𝑤&

𝑤!

PMI

• 𝑝 𝑤$ = 1234!(6!)
∑&! 1234!&(6!)

• 𝑝 𝑤$, 𝑤0 = 1234!(6!,6')
∑&!,&' 1234!(6!,6')

• Practically:
How associated are two words?

𝑤&

𝑤!

Positive PMI

• PMI ranges from −∞ to +∞
• Negative values are problematic as
• Unreliable without enormous corpora

• Suppose w1 and w2 each occur with probability 10!"

• Hard to be sure 𝑝(𝑤1,𝑤2) is significantly different than 10!#$

• So we just replace negative PMI with 0
𝑃𝑃𝑀𝐼(𝑤$; 𝑤0) = max(𝑃𝑀𝐼 𝑤$; 𝑤0 , 0)

Example
𝑤&

𝑤!

𝑝 𝑤! = 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑤& = 𝑑𝑎𝑡𝑎 =
3982
111716 = 0.3399

𝑝 𝑤! = 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =
7703
11716 = 0.6575

𝑝 𝑤& = 𝑑𝑎𝑡𝑎 =
5673
11716 = 0.4842

𝑃𝑀𝐼 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑑𝑎𝑡𝑎 = log&
0.3399

0.6575×0.4842
= 0.0944

Example

Connections

• Do some math on whiteboard …

Generalize: *2vec

• Create pairwise associations between entities, call it matrix 𝑀
• Then factorize 𝑀!

Measure word similarity with embeddings

• Dot product

𝑣,𝑤 =E
'($

#

𝑣'𝑤'

• Big if their angle is small
• But also favors long vectors, i.e., 𝑣 = ∑'($# 𝑣'0 big
• Frequent words have long vectors (why so?)

Measure word similarity with embeddings

• Normalize by length

cos 𝑣, 𝑤 =
𝑣,𝑤
𝑣 𝑤

Application: Bilingual Lexicon Induction (BLI)
• Translate words without aligned bilingual text
• Introduce some “anchors”

three

two
one

plane

boat car

bike

when

what

how

tres (three)

dos (two)

uno (one)
avión (plane)

Barco (boat)
coche (car)

bicicleta (bike)

cuando (when)

qué (what) cómo (how)

Application: Bilingual Lexicon Induction (BLI)

• English anchors: 𝑋 = [𝑥$, … 𝑥4], Spanish anchors: Y = [𝑦$, … 𝑦4]
• Learn a rotation matrix 𝑅 that aligns them

min
>

𝑅𝑋 − 𝑌 0

• Nearest neighbor search for 𝑅𝑥 in the space of 𝑦’s
• Extension: zero-shot learning

Image taken from here

https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/research/zero-shot-learning/latent-embeddings-for-zero-shot-classification

Connection with BERT

• Masked Language modeling
• Randomly mask some word
• Ask to predict based on context words, e.g.
The [mask] brown fox [mask] over [mask] lazy dog

Connection with BERT

the

⋮

fox

quick

the

⋮

fox

quick

Linear layer softmax

P(y=quick)

Maximize it

P(y=fox)
P(y=the)

Look-up embedding layer

brown

The [mask] brown fox

Transformer

[mask]

[mask]

The BERT architecture

Roadmap

• Document representation (classical)
• Bag of words
• tf-idf

• Word representation (modern)
• Word2vec and PMI
• Applications

• Classifier
• Naïve Bayesian classifier
• Softmax classifier

Naïve Bayesian Classifier

• Feature 𝑓 ∈ ℝ# , label 𝑦 ∈ {1, . . , 𝑐}. Invoke Bayesian rule:

• 𝑝 𝑦 𝑓 = ? + ?(@|+)
?(@)

• Only interested in denominator
• Assume conditional independence among feature dimensions

𝑝(𝑦|𝑓) ∝ 𝑝(𝑦)f
'

𝑝(𝑓'|𝑦)

prior

likelihood

Parameterized, e.g., Gaussian, multinomial

Start Slides from Last term
Caveat: notation inconsistency, but we will explain

Training NBC for document classification

Maximum Likelihood Estimates: just use the frequencies in the training set

To calculate count(wi, cj): concatenate all documents in class c into a mega-
document and use the frequencies in that mega-document

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf

End Slides from Last term

Questions

● How did we parameterize the likelihood?
 Multinomial
● How about tf-idf?
 Sure, just replace word count with it
● Packages? Sklearn
● …

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html

Binary Classification

● Positive v.s. negative reviews
● Feature 𝑓 ∈ ℝ# , label 𝑦 ∈ 0, 1
● Come up with 𝑃(𝑌 = 1|𝑓) or 𝑃 𝑌 = 0 𝑓 = 1 − 𝑃(𝑌 = 1|𝑓)

Logistic Regression

● Logit (raw score) 𝑠 = 𝛼,𝑓 + 𝛽, where 𝛼 ∈ ℝ# , 𝛽 ∈ ℝ
● 𝑝 𝑌 = 1|𝑓 = 𝜎 𝑠 = $

$-.#$
 (sigmoid function)

● 𝑝 𝑌 = 0|𝑓 = 1 − 𝜎 𝑠 = 𝜎(−𝑠)
● Training loss

min
B,C

E
(@,+)

− log 𝑝(𝑌 = 𝑦|𝑓)

● Note: more compact way is to define

 D𝑓 = [𝑓; 1], and J𝛼 = [𝛼; 𝛽]

 Then 𝑠 = 𝛼%𝑓 + 𝛽 = J𝛼% D𝑓

Generalize to Multi-class

● Sentiment classification: Excellent / Good / fair / poor / terrible
● POS tagging: noun / verb/ adjective / …
● Multinomial logistic regression
● Aka softmax classifer

Softmax classifier

• Feature 𝑓 ∈ ℝ# , label 𝑦 ∈ {1, . . , 𝑐}
• Linear layer 𝐴 = [𝑎$, … , 𝑎1]to be learned
• Logits (raw scores) 𝑠' = 𝑎',𝑓

• Probabilities 𝑝'(𝑓) =
.$%

∑)*!
+ .$)

• Loss function:

min
O

1
#𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝑠𝑎𝑚𝑝𝑙𝑒𝑠

E
(@,+)

ℓ(𝑓, 𝑦) ≜ − log 𝑝+(𝑓)

Gradient Solver

• Gradient Descent, Consider 1D case

Image from Stanford NLP class slides

https://web.stanford.edu/~jurafsky/slp3/slides/5_LR_Apr_7_2021.pdf

Gradient Solver

• A loss function defined on ℝ#

• Gradient is a vector of ℝ# , greatest increase of the function value
• So move along the opposite direction by some stepsize
• E.g., 2D

Stochastic Gradient Solver

• Many loss function are of the form

min
P

1
𝑛
E
'($

4

ℓ(𝑥' , 𝜃)

• Stochastic gradient descent (SGD):

 Sample an 𝑥' each time, move along − Qℓ(*%,P)
QP

• Minibatch SGD:

 Sample a batch of 𝑥'’s each time, move along − $
ℬ
∑*%∈ℬ

Qℓ(*%,P)
QP

Softmax classifier

• Search optimal 𝐴 by Stochastic Gradient Descent (SGD)
• Derive gradient due to a sample (𝑓, 𝑦)

𝜕ℓ(𝑓, 𝑦)
𝜕𝑎'

=
𝜕
𝜕𝑎'

logE
U($

1

𝑒&) − 𝑠+ = n
(𝑝+−1)𝑓, 𝑖 = 𝑦
𝑝'𝑓, 	 𝑖 ≠ 𝑦

Initialize 𝐴 randomly
While stopping criteria not met:
 sample a batch of (𝑓, 𝑦)’s, call the batch ℬ
 𝑎' −= 𝛾 r ∑(@,+)∈ℬ

Qℓ(@,+)
QV%

 for 𝑖 = 1,… , 𝑐

Questions

• Does initialization matter?
 No (because of convexity)
• How do we choose batch size?
 Trade-off between memory cost and time to convergence
• What if 𝑓 also needs to be learned?
 chain rule (pytorch excels)
• What if 𝑐 huge?
• ...

Generalize

• Generally, we can write

ℓ 𝑓, 𝑦; 𝜃 = −𝑠+(𝜃) + logE
U($

1

𝑒&)(P)

𝜕ℓ
𝜕𝜃

= −∇𝑠+(𝜃) +E
U($

1

𝑝U ∇𝑠U(𝜃)

𝑝U =
𝑒&)

∑U($1 𝑒&)

• Costly if 𝑐 big

Sampled softmax

• Approximate ∑U($1 𝑝U ∇𝑠U(𝜃) with

E
U($

1,

𝑞U∇𝑠U(𝜃) , 𝑐W < 𝑐

• E.g., 𝑞U: unigram probability
• Speed up training, but not testing

Discussion

• Strength and weakness of Naïve Bayesian v.s. softmax
• Small data: Naïve Bayesian
• Big data: softmax, integrates well with joint learning of features

Overfitting

• Softmax classifier in small data regime
• Typical learning curve trends:

train

validation

Training iterations

loss
train

validation

Training iterations

loss

Regularization

• A solution for overfitting
• Add a regularizer

min
O

E
(@,+)

ℓ(𝑓, 𝑦) + 𝛼𝑅(𝐴)

• Usually, 𝑅(𝐴) encourages weights in 𝐴 to be small

Two typical 𝑅(𝐴)’s

• L2 regularization, aka ridge regression

𝑅 𝐴 = 𝐴 0 =E
',U

𝐴',U0

• L1 regularization, aka lasso

𝑅 𝐴 = 𝐴 $ =E
',U

𝐴',U

SGD with regularizers

• Additional term to Qℓ
QV%

• L2 regularization: 𝑅 𝐴 = 𝐴 0

𝜕𝑅(𝐴)
𝜕𝐴',U

= 2𝐴',U

• L1 regularization: 𝑅 𝐴 = 𝐴 $
𝜕𝑅(𝐴)
𝜕𝐴',U

= 𝑠𝑖𝑔𝑛(𝐴',U)

Early stopping

train

validation

Training iterations

loss Stop training around here

