CS6120

Jiaji Huang
https://jiaji-huang.github.io

About myself

- PhD in electrical engineering from Duke University
- Thesis: statistical signal processing and machine learning
- Worked at Baidu Research on NLP and Speech
- Now at AWS, on Large Language Models

Announcement

- Discovery Cluster ready

- Check the $3^{\text {rd }}$ link on syllabus

Computers

1. Your laptop; will need to install python (and more)
2. Koury Cloud: this and this
3. Discovery Cluster
4. GitHub (please request an account)

Motivating Task：Positive or Negative Reivew？

風
Reviewed in the United States on September 7， 2012
I don＇t know if this is a scam or if mine was broken，but it doesn＇t work and I am still getting abducted by UFO＇s on a regular basis．

Amazon Customer

合合会解it works
Reviewed in the United States on March 21， 2018
Verified Purchase
it works greatMarcie G．
合合合合访 Freedom！
Reviewed in the United States on December 12， 2013
Knowing when＂they＂are in the area this allows me to take off my tin foil hat a little more frequently．I＇ve even peeked out the foil drapes occasionally，but still not that often．

I gave it 4 stars as I believe it could alert you sooner．I was almost teleported during one of my peeking episodes．

A Machine Learning Approach

documents
Representations

How to build the pipeline

this lecture

- Classical:

- Hand crafted features,
- e.g.,bag of words (NLP), sift (computer vision), MELfilter banks (speech)
- Learn the classifier on training features
- Modern:
- End-to-end

Learn a (deep) network that extracts feature together with a classifier

- Cutting-edge
- Pretrain + (supervised) finetune + RLHF + task specific adaptation

Amount of Resources

Roadmap

- Document representation (classical)
- Bag of words
- tf-idf
- Word representation (modern)
- Word2vec and PMI
- Applications
- Classifier
- Naïve Bayesian classifier
- Softmax classifier

Roadmap

- Document representation (classical)
- Bag of words
- tf-idf
- Word representation (modern)
- Word2vec and PMI
- Applications
- Classifier
- Naïve Bayesian classifier
- Softmax classifier

The Bag of Words Representation

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

tf-idf

- Words have different importances, overlooked by simple count
- tf: term frequency (multiple ways to define)

$$
\begin{gathered}
t f_{t, d}=\frac{\operatorname{count}(t, d)}{\sum_{t} \operatorname{count}(t, d)} \\
t f_{t, d}=\log [1+\operatorname{count}(t, d)]
\end{gathered}
$$

- idf: inverse document frequency

$$
i d f_{t}=\log \left(\frac{\# \text { total docs }}{\# \text { docs that have term } t}\right)
$$

- tf-idf for word t in document $d: t f_{t, d} \times i d f_{t}$

Implementation*

```
import math
from textblob import TextBlob as tb
def tf(word, blob):
    return blob.words.count(word) / len(blob.words)
def n_containing(word, bloblist):
    return sum(1 for blob in bloblist if word in blob.words)
def idf(word, bloblist):
    return math.log(len(bloblist) / (1 + n_containing(word,
bloblist)))
def tfidf(word, blob, bloblist):
    return tf(word, blob) * idf(word, bloblist)
```

Showing a python demo ...

[^0]Brain storming

- Ways to improve bag of words representation?
- Word order information: counts of tuple of n words (n-gram)
- tf is unigram probability in document
- For "new" word: sub-word counts
- More efficient: dimension reduction, PCA etc...
- ...

Dimension Reduction

- For $\mathrm{i}=1, \ldots$, reduced_dimension:
- Find next orthogonal direction with biggest variance
- Project feature to this direction
- Easily solved by singular value decomposition (SVD)
samples
directions

Roadmap

- Document representation (classical)
- Bag of words
- tf-idf
- Word representation (modern)
- Word2vec and PMI
- Applications
- Classifier
- Naïve Bayesian classifier
- Softmax classifier

Word representation

- Endow each word a vector
- Most naïve way: one-hot vector, length equal to vocab size
- A better way, ensure

Similar words are "nearby in semantic space"

Word representation

- Aka "word embedding", as it's embedded into a space
- Why represent them as vectors?

One use case: Word Analogy

- Allows us to use linear algebra
- Man to woman is like king to ?

Efficient Estimation of Word Representations in Vector Space

word2vec

by T Mikolov • 2013 • Cited by 37327 — Download a PDF of the paper titled Efficient Estimation of Word Representations in Vector Space, by Tomas Mikolov and 3 other authors.

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

Deep dive into skip-gram

How do we train it? Suppose a window size of 2

Source Text | Training |
| :--- |
| Samples |

Deep dive into skip-gram

- Viewed as 2-layer network
- e.g., receive a training sample ($x=$ the, $y=q u i c k$)

Why softmax here

- The outputs after linear layer are not probabilities
- i.e., they don't add to 1

We will revisit this later

- Softmax converts them to probabilities
- e.g., consider

$$
\begin{aligned}
& {\left[s_{1}, \ldots, s_{6}\right]=[0.6,1.1,-1.5,1.2,3.2,-1.1]} \\
& \operatorname{softmax}\left(s_{1}, \ldots, s_{6}\right)=\left[\frac{e^{s_{1}}}{\sum_{i=1}^{6} s_{i}}, \ldots, \frac{e^{s_{6}}}{\sum_{i=1}^{6} s_{i}}\right] \\
& =[0.055,0.090,0.0067,0.10,0.74,0.010]
\end{aligned}
$$

Deep dive into skip-gram

- The overall training objective is

$$
\min _{\Theta} \sum_{x, y}-\log p_{\Theta}(y \mid x)
$$

where Θ are parameters in the network

- Typically, we use W as word representation
- Trained by stochastic gradient descent (SGD)
- Details in last part of this lecture!

skip-gram with negative sampling

6. Neural Information Processing Systems
https://papers.nips.cc > paper > 5021-distributed-repre... :
Distributed Representations of Words and Phrases
by T Mikolov • 2013 • Cited by 40525 — An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the.

- Vocab can be huge
- huge summation on softmax denominator!
- An efficient variant: contrast with negative samples
- $\mathrm{P}\left(\mathrm{x}\right.$ and y co-occur) $=\sigma\left(W_{x}^{T} C_{y}\right)$,
where $\sigma(s)=\frac{1}{1+e^{-s}}$, sigmoid function
Will revisit this later

skip-gram with negative sampling

- Denote negative samples as $y_{i}, i=1, \ldots, k$ from $q(y)$
- Maximize:

$$
\log \sigma\left(W_{x}^{T} C_{y}\right)+\sum_{i=1}^{k}\left[\log \sigma\left(-W_{x}^{T} C_{y_{i}}\right)\right]
$$

- In practice, $q(y)$ is uni-gram probability
- Is this a good approximation for softmax?

Packages

- native c implementation
- handy python package: genism, fastText, ...

Why so successful

- See Prof. Church's opinion piece

Word2Vec

Published online by Cambridge University Press: 16 December 2016

KENNETH WARD CHURCH Show author details \vee

Abstract

My last column ended with some comments about Kuhn and word2vec. Word2vec has racked up plenty of citations because it satisifies both of Kuhn's conditions for emerging trends: (1) a few initial (promising, if not convincing) successes that motivate early adopters (students) to do more, as well as (2) leaving plenty of room for early adopters to contribute and benefit by doing so. The fact that Google has so much to say on 'How does word2vec work' makes it clear that the definitive answer to that question has yet to be written. It also helps citation counts to distribute code and data to make it that much easier for the next generation to take advantage of the opportunities (and cite your work in the process).

- A few initial successes
- Plenty of room to improve
- Publish code and data
- The PMI (point wise mutual information) between two words w_{1}, w_{2}

$$
P M I\left(w_{1} ; w_{2}\right) \triangleq \log _{2} \frac{p\left(w_{1}, w_{2}\right)}{p\left(w_{1}\right) p\left(w_{2}\right)}=\log _{2} \frac{p\left(w_{1} \mid w_{2}\right)}{p\left(w_{1}\right)}
$$

- Consider w_{2} as context word
- 2D count table

		w_{2}				
	computer	data	result	pie	sugar	count(w)
cherry strawberry digital information	2	8	9	442	25	486
count(context)	1670	1683	85	50	19	80
	3325	3982	378	5	13	3447

PMI

| | W_{2} | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | computer | data | result | pie | sugar | count(w) |
| cherry | 2 | 8 | 9 | 442 | 25 | 486 |
| strawberry | 0 | 0 | 1 | 60 | 19 | 80 |
| digital
 information
 count(context) | 1670 | 1683 | 85 | 5 | 4 | 3447 |
| | 3325 | 3982 | 378 | 5 | 13 | 7703 |
| | 4997 | 5673 | 473 | 512 | 61 | 11716 |

- $p\left(w_{1}\right)=\frac{\operatorname{count}\left(w_{1}\right)}{\sum_{w_{1}} \operatorname{counts}\left(w_{1}\right)}$
- $p\left(w_{1}, w_{2}\right)=\frac{\operatorname{count}\left(w_{1}, w_{2}\right)}{\sum_{w_{1}, w_{2}} \operatorname{count}\left(w_{1}, w_{2}\right)}$
- Practically:

How associated are two words?

Positive PMI

- PMI ranges from $-\infty$ to $+\infty$
- Negative values are problematic as
- Unreliable without enormous corpora
- Suppose w1 and w2 each occur with probability 10^{-6}
- Hard to be sure $p(w 1, w 2)$ is significantly different than 10^{-12}
- So we just replace negative PMI with 0

$$
\operatorname{PPMI}\left(w_{1} ; w_{2}\right)=\max \left(\operatorname{PMI}\left(w_{1} ; w_{2}\right), 0\right)
$$

Example

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$
\begin{gathered}
p\left(w_{1}=\text { information }, w_{2}=\text { data }\right)=\frac{3982}{111716}=0.3399 \\
p\left(w_{1}=\text { information }\right)=\frac{7703}{11716}=0.6575 \\
p\left(w_{2}=\text { data }\right)=\frac{5673}{11716}=0.4842
\end{gathered}
$$

$$
\text { PMI }(\text { information }, \text { data })=\log _{2} \frac{0.3399}{0.6575 \times 0.4842}=0.0944
$$

Example

Resulting PPMI matrix (negatives replaced by 0)

	computer	data	result	pie	sugar
cherry	0	0	0	4.38	3.30
strawberry	0	0	0	4.10	5.51
digital	0.18	0.01	0	0	0
information	0.02	0.09	0.28	0	0

Neural Information Processing Systems
https://proceedings.neurips.cc > paper > 5477-n...
Connections
Neural Word Embedding as Implicit Matrix Factorization by O Levy • Cited by 2384 - We show that using a sparse Shifted Positive PMI word-context matrix to represent words improves results on two word similarity tasks and one of two.

- Do some math on whiteboard ...

Generalize: *2vec

- Create pairwise associations between entities, call it matrix M
- Then factorize M !
node2vec: Scalable Feature Learning for Networks
by A Grover • 2016 • Cited by 10317 — Here we propose node2vec, an algorithmic framework
for learning continuous feature representations for nodes in networks. In node2vec ..
[1902.03545] Task2Vec: Task Embedding for Meta-Learning
by A Achille • 2019 • Cited by 250 - Abstract: We introduce a method to provide vectorial representations of visual classification tasks which can be used to reason about the ..

Measure word similarity with embeddings

- Dot product

$$
v^{T} w=\sum_{i=1}^{d} v_{i} w_{i}
$$

- Big if their angle is small
- But also favors long vectors, i.e., $\|v\|=\sum_{i=1}^{d} v_{i}^{2}$ big
- Frequent words have long vectors (why so?)

Measure word similarity with embeddings

- Normalize by length

$$
\cos (v, w)=\frac{v^{T} w}{\|v\|\|w\|}
$$

Application: Bilingual Lexicon Induction (BLI)

- Translate words without aligned bilingual text
- Introduce some "anchors"

Application: Bilingual Lexicon Induction (BLI)

- English anchors: $X=\left[x_{1}, \ldots x_{n}\right]$, Spanish anchors: $\mathrm{Y}=\left[y_{1}, \ldots y_{n}\right]$
- Learn a rotation matrix R that aligns them

$$
\min _{R}\|R X-Y\|^{2}
$$

- Nearest neighbor search for $R x$ in the space of y 's
- Extension: zero-shot learning

Connection with BERT

- Masked Language modeling
- Randomly mask some word
* arXiv
https://arxiv.org > cs :
BERT: Pre-training of Deep Bidirectional Transformers for ... by J Devlin • 2018 • Cited by 77914 - We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers.

W Wikipedia
BERT (language model)
Bidirectional Encoder Representations from Transformers (BERT) is a family of language models introduced in 2018 by researchers at Google.
Architecture • Performance Analysis History

- Ask to predict based on context words, e.g.

The [mask] brown fox [mask] over [mask] lazy dog

Connection with BERT

The BERT architecture

Roadmap

- Document representation (classical)
- Bag of words
- tf-idf
- Word representation (modern)
- Word2vec and PMI
- Applications
- Classifier
- Naïve Bayesian classifier
- Softmax classifier

Naïve Bayesian Classifier

- Feature $f \in \mathbb{R}^{d}$, label $y \in\{1, . ., c\}$. Invoke Bayesian rule:
$\begin{array}{ll}-p(y \mid f)=\frac{p(y) p(f \mid y)}{p(f)} \text { likelihood } \\ \text { - Only interested in denominator } & \text { prior }\end{array}$
- Assume conditional independence among feature dimensions

$$
p(y \mid f) \propto p(y) \prod_{i} \underbrace{p\left(f_{i} \mid y\right)}_{\downarrow}
$$

Parameterized, e.g., Gaussian, multinomial

Start Slides from Last term

Caveat: notation inconsistency, but we will explain

Training NBC for document classification

Maximum Likelihood Estimates: just use the frequencies in the training set

$$
\begin{aligned}
\hat{P}\left(c_{j}\right)= & \frac{\operatorname{doccount}\left(C=c_{j}\right)}{N_{d o c}} \\
\hat{P}\left(w_{i} \mid c_{j}\right)= & \frac{\operatorname{count}\left(w_{i}, c_{j}\right)}{\sum_{w \in V} \operatorname{count}\left(w, c_{j}\right)}
\end{aligned}
$$

To calculate count $\left(w_{j} c_{j}\right)$: concatenate all documents in class c into a megadocument and use the frequencies in that mega-document

Problem with Maximum Likelihood

- What if we have seen no training documents with the word fantastic and classified in the topic positive (thumbs-up)?

$$
\hat{P}(\text { "fantastic" } \mid \text { positive })=\frac{\operatorname{count}(\text { "fantastic", positive })}{\sum_{w \in V} \operatorname{count}(w, \text { positive })}=0
$$

Problem with Maximum Likelihood

- What if we have seen no training documents with the word fantastic and classified in the topic positive (thumbs-up)?

$$
\hat{P}(\text { "fantastic" } \mid \text { positive })=\frac{\operatorname{count}(\text { "fantastic", positive })}{\sum_{w \in V} \operatorname{count}(w, \text { positive })}=0
$$

- Zero probabilities cannot be conditioned away, no matter the other evidence!

$$
c_{M A P}=\operatorname{argmax}_{c} \hat{P}(c) \prod_{i} \hat{P}\left(x_{i} \mid c\right)
$$

Laplace (add-1) smoothing for Naïve Bayes

$$
\begin{aligned}
\hat{P}\left(w_{i} \mid c\right) & =\frac{\operatorname{count}\left(w_{i}, c\right)+1}{\sum_{w \in V}(\operatorname{count}(w, c)+1)} \\
& =\frac{\operatorname{count}\left(w_{i}, c\right)+1}{\left(\sum_{w \in V} \operatorname{count}(w, c)\right)+|V|}
\end{aligned}
$$

Multinomial Naïve Bayes: Learning

- From training corpus, extract Vocabulary
- Calculate $P\left(c_{j}\right)$ terms
- For each c_{j} in C do
docs $_{j} \leftarrow$ all docs with class $=c_{j}$

$$
P\left(c_{j}\right) \leftarrow \frac{\left|\operatorname{docs}_{j}\right|}{\mid \text { total \# documents| }}
$$

- Calculate $P\left(w_{k} \mid c_{j}\right)$ terms
- Text $_{j} \leftarrow$ single doc containing all docs $_{j}$
- For each word w_{k} in Vocabulary $n_{k} \leftarrow \#$ of occurrences of w_{k} in Text $_{j}$

$$
P\left(w_{k} \mid c_{j}\right) \leftarrow \frac{n_{k}+\alpha}{n+\alpha \mid \text { Vocabulary } \mid}
$$

\[

\]

Priors:

$$
\begin{aligned}
& P(c)=\frac{3}{4} \frac{1}{4} \\
& P(j)=
\end{aligned}
$$

Conditional Probabilities:

$P($ Chinese $\mid c)=(5+1) /(8+6)=6 / 14=3 / 7$
$P($ Tokyo $\mid c)=(0+1) /(8+6)=1 / 14$
$P(J a p a n \mid c)=(0+1) /(8+6)=1 / 14$
$P($ Chinese $\mid j)=(1+1) /(3+6)=2 / 9$

$$
P(\text { Tokyo } \mid j)=(1+1) /(3+6)=2 / 9
$$

41

$$
P(\operatorname{Japan} \mid j)=(1+1) /(3+6)=2 / 9
$$

Choosing a class:

$$
\begin{aligned}
\mathrm{P}(\mathrm{c} \mid \mathrm{d} 5) \propto 3 / 4 * & (3 / 7)^{3} * 1 / 14 * 1 / 14 \\
& \approx 0.0003
\end{aligned}
$$

$$
\begin{aligned}
& P(j \mid d 5) \propto 1 / 4 *(2 / 9)^{3} * 2 / 9 * 2 / 9 \\
& \approx 0.0001
\end{aligned}
$$

Underflow Prevention: log space

- Multiplying lots of probabilities can result in floating-point underflow.
- Since $\log (x y)=\log (x)+\log (y)$
- Better to sum logs of probabilities instead of multiplying probabilities.
- Class with highest un-normalized log probability score is still most probable.

$$
c_{N B}=\underset{c_{\mathrm{j}} \in C}{\operatorname{argmax}} \log P\left(c_{j}\right)+\sum_{i \in \text { positions }} \log P\left(x_{i} \mid c_{j}\right)
$$

- Model is now just max of sum of weights

End Slides from Last term

Questions

- How did we parameterize the likelihood?

Multinomial

- How about tf-idf?

Sure, just replace word count with it

- Packages? Sklearn
- ...

Binary Classification

- Positive v.s. negative reviews
- Feature $f \in \mathbb{R}^{d}$, label $y \in\{0,1\}$
- Come up with $P(Y=1 \mid f)$ or $P(Y=0 \mid f)=1-P(Y=1 \mid f)$

Logistic Regression

- Logit (raw score) $s=\alpha^{T} f+\beta$, where $\alpha \in \mathbb{R}^{d}, \beta \in \mathbb{R}$
- $p(Y=1 \mid f)=\sigma(s)=\frac{1}{1+e^{-s}}$ (sigmoid function)
- $p(Y=0 \mid f)=1-\sigma(s)=\sigma(-s)$
- Training loss

$$
\min _{\alpha, \beta} \sum_{(f, y)}-\log p(Y=y \mid f)
$$

- Note: more compact way is to define

$$
\tilde{f}=[f ; 1], \text { and } \tilde{\alpha}=[\alpha ; \beta]
$$

Then $s=\alpha^{T} f+\beta=\tilde{\alpha}^{T} \tilde{f}$

Generalize to Multi-class

- Sentiment classification: Excellent / Good / fair / poor / terrible
- POS tagging: noun / verb/ adjective / ...
- Multinomial logistic regression
- Aka softmax classifer

Softmax classifier

- Feature $f \in \mathbb{R}^{d}$, label $y \in\{1, . ., c\}$
- Linear layer $A=\left[a_{1}, \ldots, a_{c}\right]$ to be learned
- Logits (raw scores) $s_{i}=a_{i}^{T} f$
- Probabilities $p_{i}(f)=\frac{e^{s_{i}}}{\sum_{j=1}^{c} e^{s_{j}}}$
- Loss function:

$$
\min _{A} \frac{1}{\# \text { training samples }} \sum_{(f, y)}\left\{\ell(f, y) \triangleq-\log p_{y}(f)\right\}
$$

Gradient Solver

- Gradient Descent, Consider 1D case

Image from Stanford NLP class slides

Gradient Solver

- A loss function defined on \mathbb{R}^{d}
- Gradient is a vector of \mathbb{R}^{d}, greatest increase of the function value
- So move along the opposite direction by some stepsize
- E.g., 2D

Stochastic Gradient Solver

- Many loss function are of the form

$$
\min _{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}, \theta\right)
$$

- Stochastic gradient descent (SGD):

Sample an x_{i} each time, move along $-\frac{\partial \ell\left(x_{i}, \theta\right)}{\partial \theta}$

- Minibatch SGD:

Sample a batch of $x_{i}{ }^{\prime}$ s each time, move along $-\frac{1}{|\mathcal{B}|} \sum_{x_{i} \in \mathcal{B}} \frac{\partial \ell\left(x_{i}, \theta\right)}{\partial \theta}$

Softmax classifier

- Search optimal A by Stochastic Gradient Descent (SGD)
- Derive gradient due to a sample (f, y)

$$
\frac{\partial \ell(f, y)}{\partial a_{i}}=\frac{\partial}{\partial a_{i}}\left\{\log \sum_{j=1}^{c} e^{s_{j}}-s_{y}\right\}= \begin{cases}\left(p_{y}-1\right) f, & i=y \\ p_{i} f, & i \neq y\end{cases}
$$

Initialize A randomly
While stopping criteria not met:
sample a batch of $(f, y)^{\prime}$'s, call the batch \mathcal{B}
$a_{i}=\gamma \cdot \sum_{(f, y) \in \mathcal{B}} \frac{\partial \mathcal{\ell}(f, y)}{\partial a_{i}}$ for $i=1, \ldots, c$

Questions

- Does initialization matter?

No (because of convexity)

- How do we choose batch size?

Trade-off between memory cost and time to convergence

- What if f also needs to be learned?
chain rule (pytorch excels)
- What if c huge?
-...

Generalize

- Generally, we can write

$$
\begin{gathered}
\ell(f, y ; \theta)=-s_{y}(\theta)+\log \sum_{j=1}^{c} e^{s_{j}(\theta)} \\
\frac{\partial \ell}{\partial \theta}=-\nabla s_{y}(\theta)+\sum_{i=1}^{c} p_{j} \nabla s_{j}(\theta) \\
p_{j}=e^{\sum_{j=1}^{c} e^{s_{j}}}
\end{gathered}
$$

- Costly if c big

Sampled softmax

- Approximate $\sum_{j=1}^{c} p_{j} \nabla s_{j}(\theta)$ with

$$
\sum_{j=1}^{c^{\prime}} q_{j} \nabla s_{j}(\theta), c^{\prime}<c
$$

- E.g., q_{j} : unigram probability
- Speed up training, but not testing

Discussion

- Strength and weakness of Naïve Bayesian v.s. softmax
- Small data: Naïve Bayesian
- Big data: softmax, integrates well with joint learning of features

Overfitting

- Softmax classifier in small data regime
- Typical learning curve trends:

Regularization

- A solution for overfitting
- Add a regularizer

$$
\min _{A} \sum_{(f, y)} \ell(f, y)+\alpha R(A)
$$

- Usually, $R(A)$ encourages weights in A to be small

Two typical $R(A)$'s

- L 2 regularization, aka ridge regression

$$
R(A)=\|A\|^{2}=\sum_{i, j} A_{i, j}^{2}
$$

- L1 regularization, aka lasso

$$
R(A)=\|A\|_{1}=\sum_{i, j}\left|A_{i, j}\right|
$$

SGD with regularizers

- Additional term to $\frac{\partial \ell}{\partial a_{i}}$
- L2 regularization: $R(A)=\|A\|^{2}$

$$
\frac{\partial R(A)}{\partial A_{i, j}}=2 A_{i, j}
$$

- L1 regularization: $R(A)=\|A\|_{1}$

$$
\frac{\partial R^{(A)}}{\partial A_{i, j}}=\operatorname{sign}\left(A_{i, j}\right)
$$

Early stopping

Stop training around here

Training iterations

[^0]: * Example is taken from here

