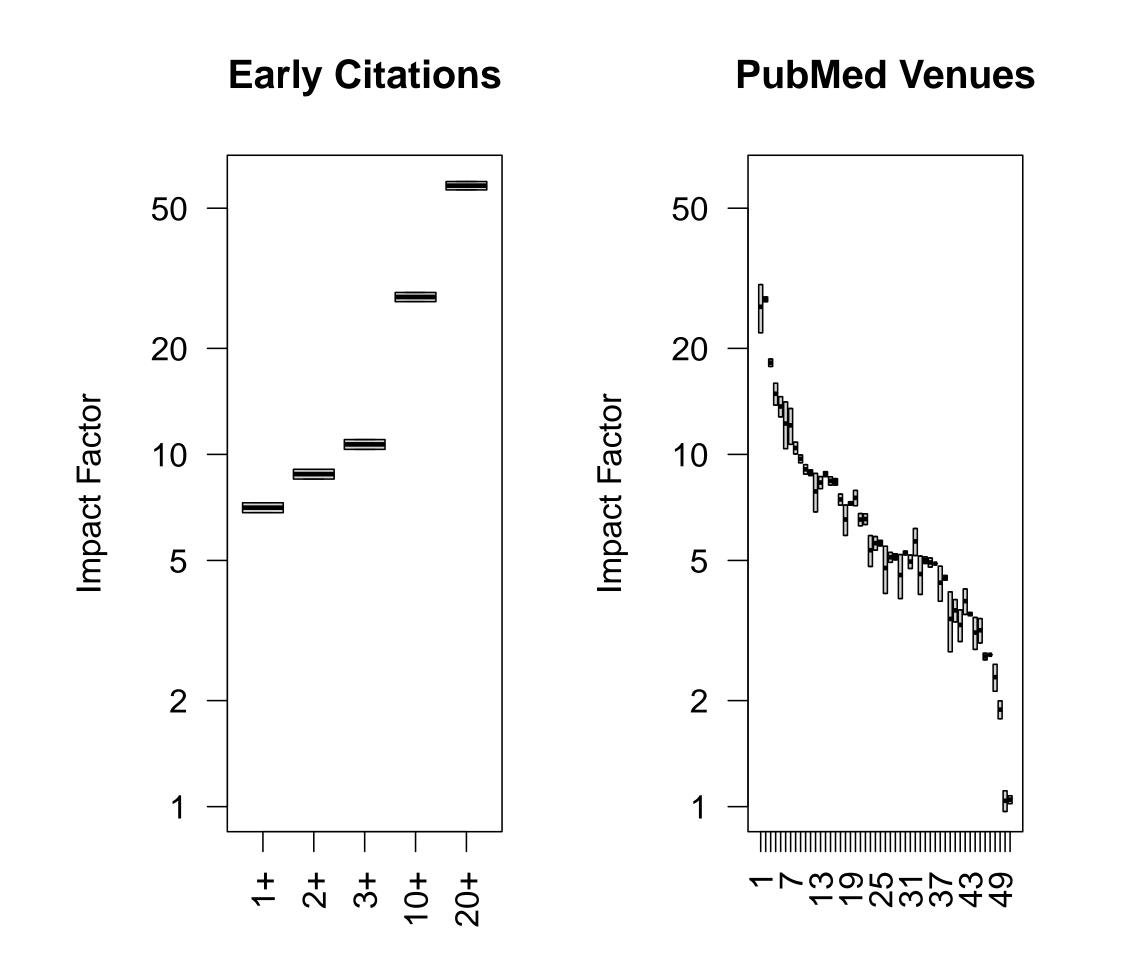
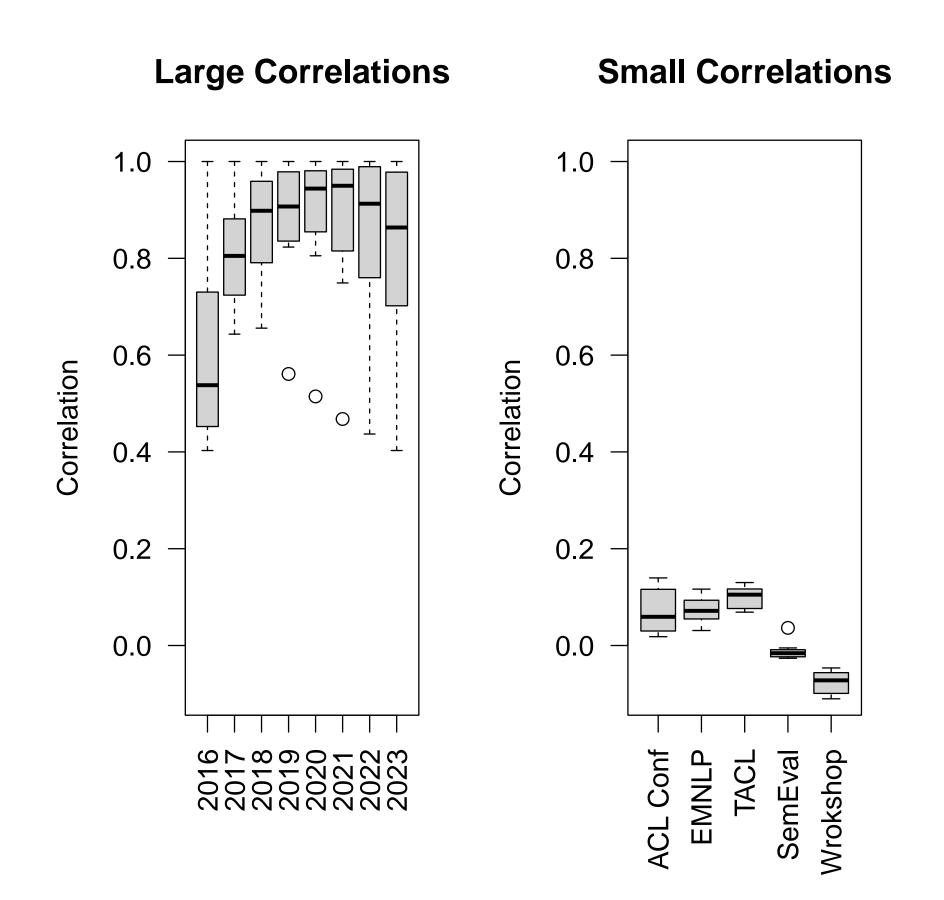
Is Peer-Reviewing Worth the Effort?

Kenneth Church, Raman Chandrasekar, John E. Ortega and Ibrahim Said Ahmad


Northeastern University: {k.church, r.chandrasekar, j.ortega, i.ahmad}@northeastern.edu https://github.com/kwchurch/is-peer-reviewing-worth-the-effort


How effective is peer-reviewing? Goal: Identify important papers
Predict future citations from:
Venue (conf, journal) and

3710 Papers in ACL Anthology

	2016	2017	2018	2019		
 ACL Conf	0.140	0.136	0.096	0.068		
EMNLP	0.031	0.116	0.103	0.084		
TACL	0.069	0.111	0.130	0.120		
SemEval	0.036	-0.005	-0.026	-0.024		
Workshops	-0.110	-0.104	-0.094	-0.077		
1.121.081 Papers in PubMed. ArXiv or ACL						

②Citations soon after publication
● Conclusion: Early citations ≫ Venue
● End with constructive proposal

ACL 0.0086 0.0109 0.016 0.015 ArXiv 8800.0 0.0255 0.024 0.021 PubMed -0.0212 -0.0012 -0.014 -0.013 Table 3: These ρ are smaller than ρ in Table 2; it is easier to predict citations in one year from another, than from venue.

Group	hm	edian	μ	σ	Ν		
PubMed, ArXi	v and	ACL	Anth	ology			
0 citations	48	1	1.3	2.3	292,566		
1+ citations	345	3	6.9	24.7	828,515		
2+ citations	345	5	8.7	28.6	604,536		
3+ citations	345	6	10.6	32.9	448,541		
10+ citations	343	17	28.6	70.1	88,490		
20+ citations	341	37	61.4	127.8	23,593		
ACL Anthology	73	2	9.9	59.0	3710		
ArXiv	236	2	6.4	47.0	101,176		
PubMed	292	2	5.4	17.2	1,026,798		
Deep Dive into ACL Anthology							

Figure 2: Left: μ (impact) by early citations; Right: μ (impact) by 50 venues in PubMed. Simple rule of thumb: for predicting future citations (μ in future), it is better to select papers with 1+ early citations ($\mu \approx 6.9$) than most of the 50 venues. Selecting papers with 20+ early citations ($\mu \approx 61$) is better than the top venue (μ for *Science* ≈ 30).

Figure 1:Early Returns (left) \gg Venue (right), based on cor (ρ) from Tables 2-3. Data: Semantic Scholar.

	Vonuo	ld in S2	2016	2017	2018	2019	2020	2021	
	NAACL	9724599	5	7	5	1	3	1	
	LREC	12260053	0	0	0	1	0	0	
	LREC	28309452	2	8	4	10	7	7	
	EMNLP	1380793	0	2	16	19	17	19	
	COLING	18649702	0	1	2	1	3	1	
	SemEval	17378758	0	0	0	2	0	0	
Table 1: Citation counts for a few ACL papers							rs		

					2020	
	Data:	3710 A	CL Pape	ers Pub.	in 2016	
					0.51	
2017	0.80	1.00	0.92	0.85	0.81	0.75
2018	0.66	0.92	1.00	0.98	0.94	0.88

0 citations	9	0	1.0	1.8	953		
1+ citations	73	3	13.0	68.2	2757		
2+ citations	73	4	17.1	79.2	2025		
3+ citations	73	6	21.6	90.0	1550		
10+ citations	73	23	57.0	155.6	481		
20+ citations	71	54	114.9	235.6	190		
ACL Main Conf.	42	5	18.7	45.2	377		
EMNLP	41	6	25.8	78.9	269		
TACL	17	11	70.5	280.3	45		
SemEval	15	1	4.7	16.3	230		
Workshops	24	1	3.8	10.1	1111		
Table 4:A few early citations compare favorably to most							
venues. Early cit	ations	are ba	ised o	n first	year after		

publication; scores (h, μ) are based on 4th year after

pub. Note ArXiv is better than PubMed in terms of μ .

Conclusions

Early citations are more predictive of future citations than venue. Consequences:

Exclusivity: Better μ (impact) if we select by early citations than current baseline (standard reviewing by PCs).
Inclusivity: More papers (N) have early citations than accepted by venues.
Robustness: Results were replicated over types of papers and pub. dates.

Constructive Proposal

Challenges for Peer-Reviewing: Too many submissions and too few qualified reviewers
One proposed alternative reviewing process:
Authors post papers on ArXiv
Papers qualify for review if cited or nominated
Qualifications for nominators: prof. (or equiv. in industry) Nominations include suggestions for reviewers as well as a promise to review four papers per nomination
Reviewers should be familiar with submission, e.g., someone suggested in a nomination or an author that cited the submission

2019 0.56 0.85 0.98 1.000.98 0.93 2020 0.51 0.81 0.94 0.98 1.000.98 2021 0.88 0.93 0.47 0.75 0.98 1.00Data: 1,026,798 PubMed Papers Pub. in 2016 2016 0.64 0.55 0.45 1.000.77 0.50 2017 0.77 1.000.90 0.82 0.75 0.68 2018 0.64 0.90 1.000.94 0.89 0.83 2019 0.55 0.82 0.94 1.000.94 0.90 2020 0.89 0.95 0.75 0.94 0.50 1.002021 0.83 0.90 1.000.45 0.68 0.95 Table 2: It is easy to predict citations for a paper in year i from citations in year j These cor (ρ) are based on Table 1. For papers pub. in 2016, we compute a vector of citations they had in year *i* and another vector for citations in year j. ρ is large, especially when $i \approx j$.